
Operator Precedence Temporal Logic
and Model Checking?,??

Michele Chiaria, Dino Mandriolia, Matteo Pradellaa,b

aDEIB, Politecnico di Milano – P.zza L. Da Vinci, 32, 20133, Milano, Italy
bIEIIT, Consiglio Nazionale delle Ricerche

Abstract

In the last decades much research effort has been devoted to extending the success of
model checking from the traditional field of finite state machines and various versions
of temporal logics to suitable subclasses of context-free languages and appropriate ex-
tensions of temporal logics. To the best of our knowledge such attempts only covered
structured languages, i.e. languages whose structure is immediately “visible” in their
sentences, such as tree-languages or visibly pushdown ones. In this paper we present
a new temporal logic suitable to express and automatically verify properties of opera-
tor precedence languages. This “historical” language family has been recently proved
to enjoy fundamental algebraic and logic properties that make it suitable for model
checking applications yet breaking the barrier of visible-structure languages (in fact
the original motivation of its inventor Floyd was just to support efficient parsing, i.e.
building the “hidden syntax tree” of language sentences). We prove that our logic is
at least as expressive as analogous logics defined for visible pushdown languages yet
covering a much more powerful family; we design a procedure that, given a formula in
our logic builds an automaton recognizing the sentences satisfying the formula, whose
size is at most exponential in the length of the formula. Our results cover both finite
and infinite string languages.

Keywords: Operator Precedence Languages, Visibly Pushdown Languages, Input
Driven Languages, ω-Languages, Temporal Logic, Model Checking.

1. Introduction

Since the pioneering works by Floyd, Hoare, McNaughton, Büchi and many oth-
ers, the investigation of the relation between formal language and automata theory and
mathematical logic has been an exciting and productive research field, whose main per-
spective and goal was the formal correctness verification, i.e., a mathematical proof that
a given design, formalized as a suitable abstract machine, guarantees system require-
ments, formalized in terms of mathematical logic formulas. Whereas the early work
by Floyd, Hoare, Dijkstra and others pursued the full generality of Turing complete
computational formalisms, such as normal programming languages, and consequently

?Work partially supported by project AUTOVAM, funded by Fondazione Cariplo and Regione Lombar-
dia.
??A preliminary version of this work was presented at the conference GandALF 2018 [1].

Email addresses: michele.chiari@polimi.it (Michele Chiari), dino.mandrioli@polimi.it
(Dino Mandrioli), matteo.pradella@polimi.it (Matteo Pradella)

Preprint submitted to Elsevier November 4, 2020

made the verification problem undecidable and dependent on human inspection and
skill, the independent approach by Büchi, McNaughton and others focused on the re-
stricted but practically quite relevant families of finite state machines (FSMs) on the
one side and of monadic logics on the corresponding side. The main achievements
on this respect have been the characterization of regular languages –those recognized
by FSMs– in terms of monadic second order (MSO) logic [2] and the definition of a
number of subfamilies that are all equivalent between each other and are characterized
in terms of its first-order fragment (FO) [3].

Such foundational results, however, remained of essentially theoretic interest be-
cause the formal correctness problem, though decidable, remains of intractable com-
plexity for MSO and FO logics (see e.g., [4]). The state of the art, however, had a
dramatic breakthrough with the advent of temporal logic and model checking [5]: for
now classic logics such as linear time temporal logic (LTL), CTL* and others, the
model checking problem, though PSPACE complete, has a time complexity bounded
by “only” a singly exponential function of formula’s length 1.

Not surprisingly, the success of model checking based on FSMs and several exten-
sions thereof, e.g., their timed version [6], generated the wish of extending it to the
case of context-free languages (CFLs) to serve much larger application fields such as
general purpose programming languages, large web data based on markup languages
such as XML and HTML. Whereas the case of the full CFL family is made difficult
if not impossible due to the lack of fundamental decidability and closure properties,
some early results have been obtained in the context of structured CFLs: with this term
we mean languages whose typical tree-shaped structure is immediately visible in their
sentences; the first instance of such language families are parenthesis languages [7],
which correspond to regular tree-languages [8]; among various extensions thereof spe-
cial attention have received input-driven (ID) [9], alias visibly push-down languages
(VPLs) [10]. Thanks to the fact that they enjoy many of the fundamental closure prop-
erties of regular languages, VPLs too have been characterized in terms of a suitable
MSO logic [10]; early attempts have also been done to support their model checking
by exploiting suitable extensions of temporal logics –whether linear time [11, 12] or
branching time [13].

It is also worth mentioning some earlier results on model checking state machines
whose nondeterministic computations have a typical tree-shaped structure by means of
a variant of alternation-free modal µ-calculus (a branching time logic) [14], whose re-
lationship with pushdown games is discussed in [15]. Moreover, the problem of model
checking regular properties on pushdown systems has been the object of a thorough
exploration. Reachability analysis of pushdown systems with alternating automata has
been studied in [16]. Techniques for model checking against pushdown systems, w.r.t.
both linear and branching time, have been given in [17, 18, 19, 20]. In these works,
specifications are given by means of temporal logics such as LTL, CTL and variations
thereof, limiting the scope to regular properties only. An early attempt at embracing
a wider class of properties was made in [21], where specifications were given in a
decidable restriction of a Presburger logic system. Later, [22] studied model check-
ing of context-free specifications, expressed with tree automata, against regular system
models.

In this paper we address the same problem in the context of a much larger sub-

1The parallel field of correctness verification for Turing complete formalisms, instead, ignited many
efforts on general purpose “semiautomatic” theorem proving.

2

family of CFL, i.e., operator precedence languages (OPLs). OPLs have been invented
by R. Floyd to support efficient deterministic parsing of programming languages [23];
subsequently, we showed that they enjoy many of the algebraic properties of struc-
tured CFLs [24]; after several decades we resumed the investigation of this family by
envisioning their application to various practical state of the art problems, noticeably
automatic verification and model checking.2

We have shown that OPLs strongly generalize VPLs [26] not only in terms of strict
set theoretic inclusion but in that they allow to describe typical programming language
constructs such as traditional arithmetic expressions whose structure is not immedi-
ately “visible” in their sentences, unless one does not take into account the implicit
precedence of, e.g., multiplicative operators over additive ones. Furthermore, unlike
regular languages and VPLs, OPLs are not necessarily real-time.

We have built an MSO characterization of OPLs [27] by extending in a non-trivial
way the key relation between “matching string positions” introduced in [28] and ex-
ploited in [10] for the logical characterization of VPLs. All in all OPLs appear to enjoy
many if not all of the pleasant algebraic and logic properties of structured CFLs but
widen their application field in a dramatic way. For a more comprehensive description
of OPL properties and their relations with other CFL subfamilies see [29].

Here we move one further step in the path toward building model checking algo-
rithms for OPLs, and the wide application field that they can support. The extensive
literature on VPLs shows that there is, in fact, the need for such results. In particular,
VPLs have been introduced with the purpose of model checking context-free proper-
ties of procedural programs [11]. However, as it is shown also in [30], they are not
expressive enough to model programs with exceptions, a construct that is ubiquitous
in modern programming languages, and similar advanced control mechanisms, such as
continuations, generators, coroutines, and so on. As we shall see in the next sections,
OPLs are well-suited to model them, thus closing an important gap in the current state
of the art. Many other systems that cannot be modeled by VPLs can be modeled by
OPLs, enabling their model checking, e.g. interrupt-driven software, version-control
systems, and database logs with rollbacks [27]. Moreover, OPLs have been shown
to be expressive enough to model some popular data-representation languages, such as
XML and JSON [25]. Thus, the development of temporal logics based on them enables
reasoning on data stored in such languages, taking into account their hierarchical struc-
ture, by means of query evaluation. This problem has already been studied for XML
in the VPL context with nested words [31], but OPLs extend such results by enabling
modeling of XML documents with unmatched tags, and HTML.

After resuming the basic background to make the paper self-contained (Section 2),
in Section 3 we introduce our operator precedence temporal logic (OPTL), which is
inspired by temporal logics for nested words, in particular, the logic NWTL [12], but
requires many more technicalities due to the lack of the “matching relation” [28] typical
of parenthesis languages. We formally define OPTL syntax and semantics for finite
words and provide examples of its usage and its generality. In Section 4 we show
that OPTL defines a larger language family than [12]’s NWTL: every NWTL formula
can be automatically translated in linear time into an equivalent OPTL formula. Strict
inclusion follows from the language family inclusion; again, we emphasize that such an
inclusion is not just a set theoretical property but shows a much wider application field.

2We also devised efficient parsers for OPLs by exploiting parallelism [25], but this issue is not the object
of the present paper.

3

Then, in Section 5 we provide the theoretical basis for model checking OP automata
(OPAs) against OPTL formulas, i.e., an algorithm which, for any given OPTL formula
of length n, builds an equivalent nondeterministic OPA of size 2n, i.e., the same size of
analogous constructions for less powerful automata and less expressive logics. Then, in
Section 6 we extend OPTL to ω-words, by highlighting the differences with the finite
case. Afterwards, in Section 6 we show how to extend to the infinite case the model
checking procedure we devised in Section 5. Section 7 concludes and envisages several
further research steps.

2. Operator Precedence Languages and Automata

Operator Precedence languages (OPL) are normally defined through their generat-
ing grammars [23]; in this paper, however, we characterize them through their accept-
ing automata [27], which are the natural way to state equivalence properties with logic
characterizations. We assume some familiarity with classical language theory concepts
such as context-free grammar, parsing, shift-reduce algorithms, syntax trees [32].

Let Σ be an alphabet. The empty string is written ε. We use a special symbol # not in
Σ to mark the beginning and the end of any string. This is consistent with the operator
parsing technique, which requires the look-back and look-ahead of one character to
determine the next action [32]. The context-free structure of words in OPLs is given by
precedence relations between pairs of input symbols, which are defined in a operator
precedence matrix.

Definition 2.1. An operator precedence matrix (OPM) M over an alphabet Σ is a
partial function (Σ ∪ {#})2 → {l, .=,m}, that with each ordered pair (a, b) associates
the OP relation Ma,b holding between a and b; if the function is total we say that M is
complete. We call the pair (Σ,M) an operator precedence alphabet. Relations l, .=,m,
are respectively named yields precedence, equal in precedence, and takes precedence.
By convention, the initial # can only yield precedence, and other symbols can only take
precedence on the ending #. If Ma,b = �, where � ∈ {l, .=,m}, we write a � b. For
u, v ∈ Σ+ we write u � v if u = xa and v = by with a � b.

An OPM completely determines the context-free structure of words on the same
alphabet through the concept of chain, which is essential to the logical characterizations
of OPLs.

Definition 2.2. A simple chain is a string c0c1c2 . . . c`c`+1, written as

c0 [c1c2 . . . c`]c`+1

such that: c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ` (` ≥ 1), and

c0 l c1
.
= c2 . . . c`−1

.
= c` m c`+1.

A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where c0 [c1c2 . . . c`]c`+1 is a
simple chain, and si ∈ Σ∗ is the empty string or is such that ci [si]ci+1 is a chain (simple
or composed), for every i = 0, 1, . . . , ` (` ≥ 1). Such a composed chain will be written
as c0 [s0c1s1c2 . . . c`s`]c`+1 . Each composed chain has an underlying simple chain.

The first symbol of a chain is called its left context, and the last one its right context.
All characters in between are called its body.

4

call ret han thr
call l .

= l m
ret m m m m

han l m l l
thr m m m m

Figure 1: OPM Mcall.

Definition 2.3. A finite word w over Σ is compatible with an OPM M iff for each pair
of letters c, d, consecutive in w, Mc,d is defined and, for each substring x of #w# which
is a chain of the form a[y]b, Ma,b is defined.

An OPM uniquely determines the way a compatible word is structured into chains.
A complete OPM on Σ determines a unique way to structure any word in Σ∗ into chains
since all words are compatible with it.
Example. OPM Mcall is shown in Figure 1. It is conceived to model the stack trace of
a computer program, containing function calls, denoted by the label call, and returns
(ret). Functions may raise exceptions with a thr statement, and they may also catch
exceptions by installing handlers (han). A single handler may catch any number of
exceptions.

In order to see how the syntactic structure of a sentence is determined by the OPM
and is formalized by the concept of chain, let us apply the traditional operator prece-
dence parsing algorithm to the sample word wex = call han call call thr thr ret (for
a more complete treatment, cf. [29, 32]). First, write all precedence relations between
consecutive characters, according to OPM Mcall. Then, recognize all innermost pat-
terns of the form a l c .

= · · · .= c m b as simple chains, and remove their bodies. In the
parsing setting, a chain body is composed by the terminal symbols of the right hand
side of a grammar rule, so removing it can be seen as a reduction. Then, write the
precedence relations between the left and right contexts of the removed body, a and b,
and iterate this process until only # characters remain. This procedure is applied to wex

as follows:

0 # l call l han l call l call m thr m thr m ret m #
1 # l call l han l call m thr m thr m ret m #
2 # l call l han l thr m thr m ret m #
3 # l call l han l thr m ret m #
4 # l call l han m ret m #
5 # l call .= ret m #
6 # .

= #

The chain body removed in each step is underlined. In step 0, call
[
call
]
thr is a sim-

ple chain, so its body call is removed. Then, in step 1 we recognize the simple chain
han
[
call
]
thr, which means han[call[call]]thr, where [call] is the chain body removed in

step 0, is a composed chain. This way, we recognize, e.g., call[call]thr, han[thr]ret as
simple chains, and call[call[call]]thr and han[[[call[call]]thr]thr]ret as composed chains
(with inner chain bodies enclosed in brackets). Overall, wex is structured by the follow-
ing composed chain:

#[call[han[[[call[call]]thr]thr]]ret]#

5

·

·

call ·

han ·

·

·

call ·

call

thr

thr

ret

#

Figure 2: AST of wex w.r.t. OPM Mcall. Dots are non-terminal symbols.

which is an isomorphic representation of wex’s abstract syntax tree (AST), where non-
terminal symbols are omitted, as depicted in Figure 2. The distinguishing feature of
OPLs, in fact, is that during their parsing nonterminals are “transparent”. This justifies
labeling them as input-driven but not visible push-down languages ([29]).

Notice how each chain body corresponds to the expansion of one non-terminal
(represented by a dot in the figure). The left (right) context of a chain is the first
terminal to the left (right) of such non-terminal. Two terminals that are consecutive –or
separated by a non-terminal– are in the l relation iff in the AST the second one is on
a lower level than the first one, in the m relation iff the first one is on a lower level, and
in the .

= relation iff they are on the same level.
According to OPM Mcall, each call position, together with the subcalls issued by

the same procedure, is enclosed in a chain body between the call or the han after
which they are initiated, and the statement terminating their procedures. This can both
be a ret, or a thr raising an uncaught exception. Each ret terminates exactly one call,
generating a model similar to nested words [10]. thr statements may, instead, terminate
multiple procedures. This can be expressed in our model, because a position may be
the context of multiple chains. In wex, the first thr terminates multiple calls. So, it is
the right context of the chains whose bodies contain such calls. Note that this many-
to-one relation cannot be modeled with nested words, because their matching relation
is strictly one-to-one, with the only exception of unmatched ret at the beginning and
call at the end of the sentence. The greater expressive power of OPL w.r.t. VPL, the
language class upon which nested words are based, is further detailed in [29].

OPMs, therefore, provide a unique, implicit structure to a universe of strings of Σ∗

– which is exactly Σ∗ if the OPM is complete. We now present the class of automata
that defines OPLs for finite strings, and later extend it to ω-words. These automata are
driven by the precedence relations defined in the OPM, which determine the automa-
ton’s moves according to the chain structure. They allow us to define languages that
are subsets of the set of words compatible with a given OPM.

6

Definition 2.4. An operator precedence automaton (OPA) is a tupleA = (Σ,M,Q, I, F, δ)
where:

• (Σ,M) is an operator precedence alphabet,

• Q is a set of states (disjoint from Σ),

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states,

• δ ⊆ Q× (Σ∪Q)×Q is the transition relation, which is the union of three disjoint
relations:

δshift ⊆ Q × Σ × Q, δpush ⊆ Q × Σ × Q, δpop ⊆ Q × Q × Q.

An OPA is deterministic iff I is a singleton, and all three components of δ are –possibly
partial– functions: δshift : Q × Σ→ Q, δpush : Q × Σ→ Q, δpop : Q × Q→ Q.

To define the semantics of the automaton, we need some new notations. We use let-
ters p, q, pi, qi, . . . to denote states in Q. We use the notation q0

a−→ q1 for (q0, a, q1) ∈
δpush, q0

a
99K q1 for (q0, a, q1) ∈ δshift, q0

q2
=⇒ q1 for (q0, q2, q1) ∈ δpop, and q0

w; q1, if
the automaton can read w ∈ Σ∗ going from q0 to q1. Let Γ be Σ×Q and let Γ′ = Γ∪{⊥}
be the stack alphabet; we denote symbols in Γ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. Given a stack content Π = πn . . . π2π1⊥, with πi ∈ Γ ,
n ≥ 0, we set smb(Π) = smb(πn) if n ≥ 1, smb(Π) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, Π〉, where w ∈ Σ∗#, q ∈ Q, and
Π ∈ Γ∗⊥.

A computation or run of the automaton is a finite sequence c0 ` c1 ` . . . ` cn

of moves or transitions ci ` ci+1; there are three kinds of moves, depending on the
precedence relation between the symbol on top of the stack and the next symbol to
read:
push move: if smb(Π) l a then 〈ax, p, Π〉 ` 〈x, q, [a, p]Π〉, with (p, a, q) ∈ δpush;
shift move: if a .

= b then 〈bx, q, [a, p]Π〉 ` 〈x, r, [b, p]Π〉, with (q, b, r) ∈ δshift;
pop move: if a m b then 〈bx, q, [a, p]Π〉 ` 〈bx, r, Π〉, with (q, p, r) ∈ δpop.

Shift and pop moves are never performed when the stack contains only ⊥.
Push and shift moves update the current state of the automaton according to the

transition relations δpush and δshift, respectively: push moves put a new element on
top of the stack consisting of the input symbol together with the current state of the
automaton, whereas shift moves update the top element of the stack by changing its
input symbol only. Pop moves remove the element on top of the stack, and update the
state of the automaton according to δpop on the basis of the pair of states consisting
of the current state of the automaton and the state of the removed stack symbol; pop
moves do not consume the input symbol, which is used only to establish the m relation,
remaining available for the next move. The automaton accepts the language L(A) =

{x ∈ Σ∗ | 〈x#, qI , ⊥〉 `∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .
The portion of an OPA run driven by a chain in the input string is called a support.

Definition 2.5. LetA be an OPA. We call a support for the simple chain c0 [c1c2 . . . c`]c`+1

any path inA of the form q0
c1−→ q1 99K . . . 99K q`−1

c`
99K q`

q0
=⇒ q`+1, where the solid

arrow corresponds to a push move, whereas the dashed ones denote shift moves. The

7

q0 q1 q2

q3

q3

call

callret

q1

han

call
q1

q2

thr

q2

q0

q0

thr

Figure 3: OPA recognizing the language of program execution traces. Push and shift transitions are repre-
sented with, resp., solid and dashed edges, labeled with the terminal symbol they read; pop transitions with
double edges, labeled with the state in the stack symbol they pop.

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this pop is
executed because of relation c` m c`+1.
We call a support for the composed chain c0 [s0c1s1c2 . . . c`s`]c`+1 any path in A of the
form

q0
s0; q′0

c1−→ q1
s1; q′1

c2
99K . . .

c`
99K q`

s`; q′`
q′0

=⇒ q`+1 (1)

where, for every i = 0, 1, . . . , `:

• if si , ε, then qi
si; q′i is a support for the chain ci [si]ci+1 , i.e., it can be decom-

posed as qi
si; q′′i

qi
=⇒ q′i .

• if si = ε, then q′i = qi.

Notice that the label of the last pop is exactly q′0.

The chains, and thus the OPM, fully determine the structure of the parsing of any
automaton over (Σ,M). If the automaton performs the computation 〈sb, qi, [a, q j]Π〉 `∗
〈b, qk,Π〉 then a[s]b is necessarily a chain over (Σ,M) and there exists a support like
(1) with s = s0c1 . . . c`s` and q`+1 = qk. The above computation corresponds to the
parsing by the automaton of the string s0c1 . . . c`s` within the context a,b. Such context
contains all information needed to build the subtree whose frontier is that string. This
is a distinguishing feature of OP languages: we call it the locality principle.

Definition 2.6. Given (Σ,M), consider the OPA A(Σ,M) = 〈Σ,M, {q}, {q}, {q}, δmax〉
where δmax(q, q) = q, and δmax(q, c) = q, ∀c ∈ Σ. We call A(Σ,M) the OP Max-
Automaton over (Σ,M).

For a max-automatonA(Σ,M) each chain has a support; since there is a chain #[s]#

for any string s compatible with M, a string is accepted byA(Σ,M) iff it is compatible
with M. Also, whenever M is complete, each string is compatible with M, hence
accepted by the max-automaton; thus, when M is complete the max-automaton defines
the universal language Σ∗ by assigning to any string the (unique) structure compatible
with the OPM.
Example (cont.). The max-automaton for Mcall accepts all strings on its alphabet, as it
gives every chain a support. It is guided by precedence relations, which determine the
kind of moves it performs each time. The first character of the body of a simple chain

8

input state stack relation next move

call han call call thr thr ret # q0 ⊥ # l call push
han call call thr thr ret # q1 [call, q0]⊥ call l han push

call call thr thr ret # q2 [han, q1][call, q0]⊥ han l call push
call thr thr ret # q1 [call, q2][han, q1][call, q0]⊥ call l call push

thr thr ret # q1 [call, q1][call, q2][han, q1][call, q0]⊥ call m thr pop
thr thr ret # q1 [call, q2][han, q1][call, q0]⊥ call m thr pop
thr thr ret # q2 [han, q1][call, q0]⊥ han l thr push

thr ret # q2 [thr, q2][han, q1][call, q0]⊥ thr m thr pop
thr ret # q2 [han, q1][call, q0]⊥ han l thr push

ret # q2 [thr, q2][han, q1][call, q0]⊥ thr m ret pop
ret # q2 [han, q1][call, q0]⊥ han m ret pop
ret # q1 [call, q0]⊥ call .= ret shift

q1 [ret, q0]⊥ ret m # pop
q0 ⊥ # .

= # –

Figure 4: Run of the OPA of Figure 3 on wex.

is always read by a push, starting its support, and a pop is always performed after the
last one, ending the support. All other characters (in this case only ret) are read by a
shift, which updates the stack symbol pushed with the first one. Thus, the sequence of
moves of an OPA on a given word is determined by the OPM only, and OPA may only
differ in word acceptance by enabling or forbidding certain transitions, depending on
the current state and, only for pop moves, on the topmost stack symbol.

The max-automaton gives to string wwr = ret call han the structure #[[ret]call[han]]#.
The initial ret can appear without a previous call because # l a, for any a ∈ Σ, and the
unmatched call can too, symmetrically. This is similar to unmatched calls and returns
in VPLs.

In Figure 3, instead, we show an OPA on Mcall that only accepts program execution
traces that are well-formed according to the following rules: all calls are matched either
singularly by a ret or multiply by a thr; a thr pops all pending calls until a handler is
found, if any; otherwise the stack is completely emptied; a single handler may catch
several thrs but is uninstalled by a return that matches the call that installed it. Neither
unmatched rets nor thrs outside of a call are accepted.

To guarantee the above rules the OPA of Figure 3 behaves as follows: in state q0, no
function is currently active, so only calls can be read. In state q1, at least one function
body is active, so other functions can be called, or a handler can be installed, in which
case the OPA goes to state q2. If a thr statement is encountered, all stack symbols
pushed with the previous calls are popped, until the one pushed from state q1 leads to
q2 –a handler was installed– or the one pushed from state q0 leads to q3 –no handler
is on the stack–, from which thr is read with a push and immediately popped without
changing the state.

Figure 4 shows a run of the OPA on wex. The reader can easily verify that the OPA
rejects wwr, as well as any word where a thr occurs when the stack is empty.

Note that OPAs are not real-time, since pop moves are essentially ε-moves, and use
the input symbol as a look-ahead, without actually reading it. In our example, before
reading the first thr statement of wex, the OPA pops the stack symbols it pushed when
reading the calls terminated by it. Thus, a single character (thr) ends the multiple
supports of the corresponding chains, and also starts a new one. Conversely, VPLs are
recognized by automata that are strictly real-time, i.e. they consume exactly one input

9

·
·

·

call ·

han ·

thr

ret

call ·
·

call ret

call ·

call ·

call ...

#[[call[han[thr]]ret]call[[call ret]call[call[call . . .

Figure 5: Example right recursive OP ω-word (right), with its AST (left), on OPM Mcall. The substring [call
at the end is repeated infinitely many times.

symbol for each transition. This property determines their more limited expressive
power.

Closure Properties. OPLs enjoy several important closure properties [24, 26]. They
are closed under union, complement and intersection, so that OPLs sharing the same
OPM form a Boolean algebra. This determines the decidability of the inclusion prob-
lem for OPLs, while that of the emptiness problem holds for the whole class of context-
free languages. They are also closed w.r.t. concatenation, Kleene star, and reversal. De-
terministic OPAs are expressively equivalent to the nondeterministic ones, in contrast
to what happens for generic pushdown automata. OPLs have also been characterized
by means of monadic second order logic [27].

2.1. Operator Precedence ω-Languages

All above definitions are extended to infinite words in the traditional way, but with
the following distinctions. Given an alphabet (Σ,M), an ω-word w ∈ Σω is compatible
with M if every prefix of w is compatible with M. OPω-words are not terminated by the
delimiter #. Anω-word may contain never-ending chains of the form c0lc1

.
= c2

.
= · · · ,

where the l relation between c0 and c1 is never closed by a corresponding m. Such
chains are called open chains and may be simple or composed. Notice that a composed
open chain may contain both open and closed subchains, obviously with the constraint
that a closed chain cannot contain an open one.

A terminal symbol a ∈ Σ is pending if it is part of the body of an open chain and of
no closed chains.
Example. Figures 5 and 6 are two examples of OP ω-words. Figure 5 is right recursive,
in the sense that the infinite part of the AST grows toward the right. Thus, each one of
the calls with no matched ret or thr is the right context of a different open chain, and
they are all pending positions. Figure 6 is left recursive, as the tree grows toward the
left. The second call is the right context of infinitely many chains, and it is the only
pending position besides #. Figure 6 is a bit less intuitive because the tree grows by
adding nodes at the root of a subtree, as denoted by the vertical dots.

OPA classes accepting the whole class of ωOPLs can be defined by augmenting
Definition 2.4 with Büchi or Muller acceptance conditions [27]. In this paper, we
only consider the former. The semantics of configurations, moves and infinite runs are
defined as for finite OPAs. For the acceptance condition, let ρ be a run on an ω-word
w. Define Inf(ρ) = {q ∈ Q | there exist infinitely many positions i s.t. 〈βi, q, xi〉 ∈ ρ} as

10

#[[call ret]call[[. . . [[[[call ret]call ret]call[han]ret]call ret] . . .

·
·
·

call ret

call ·

...

·
·

·
·

call ret

call ret

call ·

han

ret

call ret

Figure 6: Example left recursive OP ω-word (left), with its AST (right), on OPM Mcall. The substring
call ret] at the end is repeated infinitely many times.

the set of states that occur infinitely often in ρ. ρ is successful iff there exists a state
q f ∈ F such that q f ∈ Inf(ρ). An ωOPBA A accepts w ∈ Σω iff there is a successful
run of A on w. The ω-language recognized by A is L(A) = {w ∈ Σω | A accepts w}.
Unlike OPAs, ωOPBAs do not require the stack to be empty for word acceptance: when
reading an open chain, the stack symbol pushed when the first character of the body of
its underlying simple chain is read remains into the stack forever; it is at most updated
by shift moves.
Example (cont.). We invite the reader to simulate (part of) a run ρ of the OPA of
Figure 3 on the words of Figures 5 and 6 to get familiar with how ωOPBAs work.
For both words we have Inf(ρ) = {q1}. With the final set F = {q0}, both words are
rejected, as the OPA accepts the language of stack traces with all calls matched with
a ret or a thr. Changing it to F = {q1, q2} yields an OPA accepting the language of
well-formed stack traces, with unmatched (or pending) calls representing procedures
that run indefinitely. This kind of behavior is typical of software that runs forever, such
as servers, certain embedded systems, and so on.

The most important closure properties of OPLs are preserved by ωOPLs, which
still form a Boolean algebra and are closed under concatenation of an OPL with an
ωOPL [27]. The equivalence between deterministic and nondeterministic automata is
instead lost in the infinite case, which is unsurprising, since it also happens for regular
ω-languages and ωVPLs.

To summarize, given an OP alphabet, its OPM M assigns an unambiguous structure
to any compatible string in Σ∗ (or Σω); unlike parentheses languages such a structure is
not visible in the string, and must be built by means of a non-trivial parsing algorithm.
An OPA (or an ωOPBA) defined on the OP alphabet selects an appropriate subset
within the “universe” of strings compatible with M. In some sense this property is yet
another variation of the fundamental Chomsky-Shützenberger theorem.

11

l call l han l call l call l call m thr m thr m thr m ret m
pa pb pc pd t1 t2 t3 pa

0 1 2 3 4 5 6 7 8 9 10

#[call[han[[[[call[call[call]]]thr]thr]thr]]ret]#

Figure 7: An example of execution trace (top), according to Mcall (Figure 1). Chains are highlighted by arcs
joining their contexts; structural labels are typeset in bold, while other atomic propositions are shown below
them. The chain structure is also shown with brackets (bottom). First, procedure pa is called (position 1),
and it installs an exception handler in 2. Then, three nested procedures are called, and the innermost one
(pd) throws a sequence of exceptions, which are all caught by the handler. Finally, pa returns, uninstalling
the handler.

3. Operator Precedence Temporal Logic

As we remarked in the previous section, languages recognized by different OPAs
on a given OP alphabet form a Boolean algebra. These properties allow us to define
OPTL (Operator Precedence Temporal Logic) as a sound propositional temporal logic,
with logical disjunction, conjunction and negation. Given an OP alphabet, each well-
formed OPTL formula characterizes a subset of the universal language based on that
alphabet. Due to the closure properties above, for each OPTL formula it is possible to
identify an OPA that recognizes the same language denoted by it, opening the way for
model checking of OPTL.

Next, we present the syntax of OPTL explaining its meaning by means of simple
examples, then, we formally define its semantics on finite words, and provide more
complex, real-world examples in Section 3.3. We extend its definition to infinite words
in Section 6.

3.1. Syntax and Informal Semantics
Let AP be the finite set of atomic propositions: OPTL relies on an OP alphabet

based on P(AP), so terminal characters are subsets of AP, and word structure is given
by an OPM defined on P(AP). Since defining an OPM on a power set is often uselessly
cumbersome, in this paper we define it on a set Σ ⊆ AP, whose elements are called
“structural labels”, and are typeset in bold face. The corresponding OPM on P(AP)
can be derived from the structural label contained in each subset of AP, leaving the
matrix undefined for subsets not containing exactly one element of Σ. For example, in
the word of Figure 7, position 1 is labeled with the set {call, pa}, and position 3 with
{call, pb}: they both contain call, so they are in the l relation according to matrix Mcall
of Figure 1.

The syntax of OPTL is given by the following grammar, where ‘a’ denotes any
symbol in AP:

ϕ := a | ¬ϕ | (ϕ ∧ ϕ) | #ϕ | #χϕ | �ϕ | �χϕ |
(ϕU ϕ) | (ϕU� ϕ) | (ϕ S ϕ) | (ϕ S� ϕ) | (ϕU� ϕ) | (ϕ S� ϕ)

We informally show the meaning of OPTL operators by referring to the word of Fig-
ure 7, w.r.t the OPM of Figure 1. The # and � symbols denote the next and back

12

operators from LTL, while the undecoratedU and S operators are LTL until and since.
These operators have the same semantics as in LTL, and thus they may only express
regular properties, although they do so on OP words, whose structure is tree-like, and
not only regular. However, in order to fully exploit the expressive power of OPLs,
operators capable of interacting with the peculiarities of their structure are needed.

The #χ and �χ operators, which we call matching next and matching back, express
properties on string positions in the maximal chain relation (which will be formally
defined later on) with the current one. In the figure, the chain relation between two
positions is shown by an arc joining them. A chain is maximal if it is the outermost
one starting or ending in a position: for example, the chain between positions 2 and 9
is maximal, while the one between 2 and 8 is not, because it is contained in the body
of the former. For example, formula #χthr, when evaluated in positions containing a
call, is true if the corresponding procedure is terminated by an exception thrown by an
inner procedure, such as 3 and 4 of Figure 7, because position 3 forms a maximal chain
with 6, in which thr holds, and so on. Formula �χhan, if evaluated in thr positions,
is true if the corresponding exception is caught by a han statement, such as 6, 7 and 8,
because e.g. position 2 forms a chain with 6, and han holds in 2.

The U� and S� operators, called operator precedence summary until and since,
are inspired to the homonymousUσ andSσ operators from [12], and are path operators
that can “jump” over chain bodies; the symbol � is a placeholder for one or more
precedence relations allowed in the path (e.g. Ul .= orUml and so on).

The presence or absence of these relations influences the ability of the summary
paths associated with these operators to “cross” chains, entering them from the outside
or exiting them from the inside; e.g., the m relation allows paths starting inside the
body of a chain to exit it, and proceed with its right context. Note that the position
before the right context of a chain is always in the m relation with it. For example,
formula (call∨ thr)Um ret is true in position 3 because there is a path that jumps over
the chain between 3 and 6, and goes on with positions 7, 8 and 9, which are in the m
relation: positions 3 and those from 6 to 8 satisfy call∨ thr, while position 9 satisfies
ret. Since call positions yield precedence to other call positions, if this operator is
evaluated in such positions, its paths cannot enter the body of an inner procedure call,
but they can only jump to the thr statement.

The l relation allows paths to enter call bodies: formula > Ul pd is true in po-
sition 2 because of path 2-3-4-5, which enters all chains it encounters. Such a path
could, however, skip the maximal chain starting in 2 and continue after 9. This can be
prevented by adding (han ∨ call), reducing the scope of the formula to a single stack
frame: han ∧ ((han ∨ call) Ul pd) holds in han positions that can catch exceptions
thrown by a call to procedure pd.

The .
= relation allows paths to connect consecutive positions that are part of the

same right-hand side. This is useful especially in the presence of OPMs with .
=-

circularity, such as the one used in Section 4. The precedence relations can be com-
bined together to sum these three different behaviors for the summary until and since
operators, posing or lifting restrictions on the way these operators navigate the tree-
like structure of OP words. In a sense, Ul .= resembles the summary-down until of
[12], while U .

=m behaves similarly to the summary-up, with the difference that OPTL
operators can interact with multiple chains ending in the same position. Similar con-
siderations can be made for the since versions of these operators.
U� and S�, where � is a placeholder for ↑ or ↓, are called hierarchical until and

since, and express properties about the multiple positions in the chain relation with the
current one: their associated paths can dive up and down between such positions. For

13

example, thrU↑ t3 and thr S↓ t1 hold in position 2, because there is path 6-7-8 made
of ending positions of chains starting in 2, such that thr holds until t3 holds (or thr has
held since t1 held). Formulas callU↓ pc and call S↑ pb hold in position 6, because of
path 3-4, made of positions where a chain ending in 6 starts, and whose labels satisfy
the appropriate until and since conditions.

3.2. Formal Semantics

The OPTL semantics is based on the OP word structure 〈U,MP(AP), P〉 where

• U = {0, 1, . . . , n, n + 1}, with n ∈ N is a set of word positions;

• MP(AP) is an operator precedence matrix on P(AP);

• P : U → P(AP) is a function associating each word position in U with the set
of atomic propositions that hold in that position, with P(0) = P(n + 1) = {#}.

The word structure is given by the OPM MP(AP), which associates a precedence
relation to each pair of positions, based on the subset of AP associated to them by
P. For OPTL to be able to denote the universal language P(AP)∗, MP(AP) must be
complete. In the following we will denote subsets of AP by lowercase letters in italic,
such as a ∈ P(AP). For any i, j ∈ U we write, i l j if a = P(i), b = P(j) and the
relation a l b is in MP(AP).

The semantics of OPTL deeply relies on the concept of chain, presented in Sec-
tion 2. We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i < j iff i and j form the context of a chain. In case of composed chains, this
relation is not one-to-one: there may be positions where multiple chains start or end.
Given i, j ∈ U, the chain relation has the following properties:

1. It never crosses itself: if χ(i, j) and χ(h, k), for any h, k ∈ U, then we have
i < h < j =⇒ k ≤ j and i < k < j =⇒ i ≤ h.

2. If χ(i, j), then i l i + 1 and j − 1 m j.

3. There exists at most one single position h s.t. χ(h, j) and h l j or h .
= j; for any

k s.t. χ(k, j) and k m j we have k > h.

4. There exists at most one single position h s.t. χ(i, h) and i m h or i .= h; for any k
s.t. χ(i, k) and i l k we have k < h.

We additionally define two one-to-one relations, helpful in identifying the largest chain
starting or ending in a word position. More formally, the maximal forward chain re-
lation is defined so that −→χ (i, j) ⇐⇒ χ(i, j) ∧ (i .

= j ∨ i m j) for any i, j ∈ U, and
the maximal backward chain is defined as ←−χ (i, j) ⇐⇒ χ(i, j) ∧ (i l j ∨ i .

= j).
In finite OP words, this implies −→χ (i, j) iff j = max{k ∈ U | χ(i, k)} and ←−χ (i, j) iff
i = min{k ∈ U | χ(k, j)}. In Section 6, we shall see that this does not always hold in
OP ω-words. The maximal forward (resp. backward) chain relation is undefined for a
pair of positions either if they are the context of no chain, or if they are the context of
a chain which is not forward- (resp. backward-) maximal.

Let w be an OP word, and a ∈ AP. Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P(i). Operators such as ∧ and ¬ have the usual semantics from
propositional logic, while # and � have the same semantics as in LTL (i.e. (w, i) |= #ϕ
iff (w, i + 1) |= ϕ, and similarly for �).

14

The #χ and �χ operators express properties regarding the right (resp. left) context
of a maximal chain that starts (resp. ends) in the current position: (w, i) |= #χϕ iff
there exists a position j ∈ U such that −→χ (i, j) and (w, j) |= ϕ; symmetrically, (w, i) |=
�χϕ iff there exists a position j ∈ U such that ←−χ (j, i) and (w, j) |= ϕ. In Figure 7,
(w, 3) |= #χthr because −→χ (3, 6) and (w, 6) |= thr; (w, 6) |= �χhan holds because←−χ (2, 6) and (w, 2) |= han, but (w, 6) 6|= �χpb because chain χ(3, 6) is not backward-
maximal (although it is forward-maximal).

A path of length n ∈ N between i, j ∈ U is a sequence of positions i1 < i2 <
· · · < in, with i ≤ i1 and in ≤ j. The until operator on a set of paths Π is defined as
follows: for any word w and position i ∈ U, and for any two OPTL formulas ϕ and ψ,
(w, i) |= ϕUΠ ψ iff there exist a position j ∈ U, j ≥ i, and a path i1 < i2 < · · · < in
between i and j in Π such that (w, ik) |= ϕ for any 1 ≤ k < n, and (w, in) |= ψ. The since
operator is defined symmetrically. Note that a path from i to j does not necessarily
start in i and end in j, but it may do in positions between them. However, this will only
happen with hierarchical paths. We define the different kinds of until/since operators
by associating them with suitable sets of paths.

The linear until (ϕU ψ) and since (ϕSψ) operators, based on linear paths, have the
same semantics as in LTL. A linear path starting in position i ∈ U is such that i1 = i
and, for any 1 ≤ k < n, ik+1 = ik + 1.

The OP-summary until operator exploits the −→χ relation to express properties on
paths that skip chain bodies, also keeping precedence relations between consecutive
word positions into account.

Definition 3.1. Given a set � ⊆ {l, .=,m}, the U� operator is based on the class of
forward OP-summary paths. A path of this class between i and j ∈ U is a sequence of
positions i = i1 < i2 < · · · < in = j such that, for any 1 ≤ k < n,

ik+1 =

h if −→χ (ik, h) and h ≤ j;
ik + 1 if ik � ik + 1 with � ∈ �, otherwise.

There exists at most one forward OP-summary path between any two positions.
For example, in Figure 7, if we take � = {m} as in (call ∨ thr) Um ret, the path
between 3 and 9 is made of positions 3-6-7-8-9, because −→χ (3, 6) and the body of this
chain is skipped, and 6 m 7, 7 m 8 and 8 m 9. If we took e.g. � = { .=,l}, there would
be no such path, because consecutive positions in the m relation are not considered.
With � = {m,l}, the path between 2 and 6 does not skip the body of chain χ(2, 6),
because it is not forward-maximal: it is the linear path 2-3-4-5-6. The OP-summary
since operator is based on backward OP-summary paths, which are symmetric to their
until counterparts, relying on the←−χ relation instead of −→χ .

Definition 3.2. A backward OP-summary path is a sequence of positions i = i1 < i2 <
· · · < in = j such that, for any 1 < k ≤ n,

ik−1 =

h if←−χ (h, ik) and h ≥ i;
ik − 1 if ik − 1 � ik with � ∈ �, otherwise.

For example, (thr ∨ han) Sl call holds in position 8 because of path 1-2-8, that
skips the body of chain←−χ (2, 8) and satisfies thr∨ han in 2 and 8, and call in 1. Again,
bodies of chains that are not backward-maximal cannot be skipped.

While summary operators are only aware of the maximal chain relations, hierar-
chical operators can express properties discriminating between all other chains. The

15

hierarchical yield-precedence until and since operators, denoted asU↑ and S↓ respec-
tively, are based on paths made of the ending positions of non-maximal chains starting
in the current position i ∈ U. The former of such paths is a sequence of word positions
i1 < i2 < · · · < in, with i < i1, such that for any 1 ≤ k ≤ n we have i l ik and χ(i, ik),
and, additionally, there is no i′k that satisfies these two properties and ik−1 < i′k < ik.
Moreover, for the until operator i1 must be the leftmost position enjoying the above
properties (i.e. there is no i′1 s.t. i < i′1 < i1 enjoying them), and for the since operator
in must be the rightmost one.
S↓ is called a since operator despite being a future modality. We chose this naming

because in formulas such as ϕ S↓ ψ, ψ must hold at the beginning of the path, while
ϕ must hold in subsequent positions, which is the typical behavior of since operators.
Note that these paths only contain forward non-maximal chain ends, which are in the
l relation with i. For example, in position 2 thr U↑ t3 holds because of path 6-7-8,
since thr holds in 6-7 and t3 in 8; instead, the path made only of position 6 and the one
made of 6-7, in which t3 does not hold, do not satisfy it. Similarly, thrS↓ t1 is satisfied
by path 6-7-8, but not by the path made of position 8 and the one made of positions
7-8, in which t1 does not hold. Position 9 is not included in these paths, because it does
not satisfy the condition 2 l 9 (indeed, 2 m 9).

Conversely, hierarchical take-precedence until and since operators (U↓ and S↑)
consider non-maximal chains ending in the current position j ∈ U. The paths they are
based on are sequences of word positions i1 < i2 < · · · < in, with in < j, such that for
any 1 ≤ k ≤ n we have ik m j and χ(ik, j), and, additionally, there exists no position
i′k that satisfies these two properties and ik < i′k < ik+1. For the until operator, i1 must
be the leftmost position enjoying these properties, and for the since operator in must be
the rightmost (i.e. there is no i′n, in < i′n < j, that satisfies them). Note that U↓ is an
until operator despite being a past modality: again, the reason is that ϕU↓ ψ enforces
ψ at the end of the path, and ϕ in previous positions, making it more similar to an until
operator. In position 6, call U↓ pc is satisfied by path 3-4 and not by the one made
only of position 3, because pc does not hold in 3, but it does in 4, and call holds in 3.
Formula callS↑ pb is satisfied by path 3-4, and not by the one made only of 4, because
pb holds in 3 and call in 4.

3.3. Examples

Many relevant properties can be expressed in OPTL. In the paper, we use the stan-
dard shortcuts of LTL, such as 2 and 3, extended naturally to OPTL operators. E.g.
3↑ψ := > U↑ ψ, and 2↑ψ := ¬3↑¬ψ are defined such that, evaluated in position i,
mean that ψ holds in, resp., at least one and all positions j with χ(i, j) and not −→χ (i, j).
3− ↑ψ := > S↑ ψ and 2− ↑ψ := ¬3− ↑¬ψ are symmetric.

Total/partial correctness. #retψ := #χ(ret∧ψ)∨#(ret∧ψ), evaluated in a call, states
that it is closed by a ret in which ψ holds. Thus, formula 2[call =⇒ #ret>] holds if
all procedures terminate, while it is false if there is an uncaught exception. We can also
express Hoare-style pre- and post-conditions [33], which are used in most classical
verification techniques. 2[(call ∧ pA ∧ ρ) =⇒ #retθ] expresses total correctness,
i.e. whenever pre-condition ρ holds when procedure pA is called, the latter terminates
normally, with post-condition θ holding. Instead, 2[(call ∧ pA ∧ ρ ∧ #ret>) =⇒
#retθ] expresses partial correctness, i.e. the post-condition has to hold only when the
procedure terminates normally.

16

Exception Safety. We can do the same with thr statements: #thrψ := #χ(thr ∧ ψ) ∨
#(thr ∧ ψ), evaluated in a call, states that it is terminated by a thr in which ψ holds.
2[(call ∧ pA) =⇒ ¬#thr >] is the requirement that procedure pA never throws an ex-
ception, also known as the no-throw guarantee. When partial correctness is generalized
to exceptions, we get exception safety [34], an important concept for the correctness
of, especially, C++ programs. Weak exception safety requires that, when a C++ class
member function terminates exceptionally, all class invariants are preserved (so the
class instance is still in a functional state), and no resources are leaked. Strong ex-
ception safety adds the requirement that, in case of exceptional exit, the operation is
aborted, and the state of the instance remains the same as it was before the member
function was called. If θ is a class invariant, formula 2[(call ∧ pA ∧ θ ∧ #thr>) =⇒
#thrθ] expresses weak exception safety for pA, and strong exception safety if θ repre-
sents the whole state of the class instance.

It is also possible to pose constraints on the thr statements caught by a handler:
3↑ψ holds in a handler if ψ holds in at least one of the thrs it catches. So, 2[han =⇒
¬(3↑(thr∧3− ↑pA)∧3↑(thr∧3− ↑pB))] means that a single handler cannot catch one or
more exceptions that terminate both procedures pA and pB.

Function-Local Requirements. With OPM Mcall, the call of a procedure is the left
context of non-maximal chains whose right contexts are the calls and hans it issues.
Thus, 3locψ := 3↑((call ∧ ψ) ∨ (han ∧ 2↑(call =⇒ ψ))) is true if ψ holds in one
of the calls issued by the procedure represented by the call in which it is evaluated
(even if they are guarded by a han). A “globally” version of this operator can be
defined symmetrically. If we mark with wrX the fact that a function writes the program
variable X, then 2[call =⇒ (3locwrX =⇒ #thr>)] requires that any function whose
sub-calls write to X is terminated by an exception.

We did not include “internal” positions in OPM Mcall for conciseness of the exam-
ples, but they could be defined with an .

=-circularity as in OPM MNW from Section 4,
in order to represent program instructions that do not concern function invocation or
termination. Then, function local requirements on such positions could be easily ex-
pressed with aU .

= operator.

Stack Inspection. Stack Inspection gathers a wide range of requirements concerning
the sequence of function frames that are present on the program’s stack at a certain
point of the execution. It is used to enforce security policies in, e.g., Java programs
[19, 35]. With the shortcut ϕ Scall ψ := (call =⇒ ϕ) Sl .= (call ∧ ψ) we get a since
operator that only considers calls of procedures whose instances are active when the
statement at the current word position is executed. This operator is similar to the call
since of CaRet [11], but it can also work in the presence of exceptions. We also add
the related back operator �callψ := (¬call)Sl .= (call∧ψ), which enforces ψ in the call
of the function on top of the stack at the point in the execution represented by a word
position. Due to the separation property of LTL [36], these operators can express all
first-order properties on the stack trace, subsuming the formalism of [35]. A typical
requirement of this class is the following: function pA can only be called by functions
with privilege level l1, an not by those with the lower privilege l2. We can check this
with formula 2[(call∧ pA) =⇒ (¬l2)Scall l1]. The latter is also expressible in CaRet,
but in OPTL we may additionally state that, if this requirement is violated, an exception
is thrown: 2[(call∧pA∧ ((¬l1)Scall l2)) =⇒ #thr>]. With a similar operator, formula
2[call∧ pb =⇒ callSl .= han] states that all calls to procedure pb must be guarded by
a han statement catching the exceptions they may throw.

17

With hierarchical operators, we can formulate requirements limited to the proce-
dures in the stack trace that have been terminated by a single thr statement. Short-
cut 3− ↑ψ is true in a thr position if ψ holds in at least one of the functions it termi-
nates. So, we may express restrictions on which procedures may raise exceptions.
E.g., 2[thr =⇒ ¬3− ↑pb] means that procedure pb cannot be terminated by an excep-
tion. 2[thr =⇒ (¬l2) S↑ l1] means that only functions with privilege level l1 may
throw, and those with level ¬l2 may only do so through an invocation to one of them.
Remark. Those of the requirements listed above that deal with exceptions are not ex-
pressible in NWTL, because its nesting relation is one-to-one, and fails to model situ-
ations in which a single entity is in relation with multiple other entities. As we noted
in Section 2, VPL can be used to model function calls and returns, which are in a
one-to-one relation, but they cannot model the example of Figure 7, because they have
no way to express the many-to-one relation that holds between multiple function calls
terminated by an exception, and the exception itself.

4. Relationship with Nested Words

We now explore the relationship between OPTL and the NWTL logic presented
in [12]. NWTL is a temporal logic based on the VPL family, which is strictly contained
in OPL. In [26, 27, 29] the relations between the two families are discussed in depth
both from a mathematical and an application point of view: building OPTL formulas
describing OPLs that are not VPLs is a trivial job. This proves that there exist languages
not expressible in NWTL that can be expressed in OPTL. To prove that OPTL is more
expressive than NWTL, we first show a way to translate a nested word into an “almost
isomorphic” OPTL structure; then, we give a translation schema for NWTL formulas
into equivalent OPTL ones.

A nested word is a structure NW = 〈U, (Pa)a∈Λ, <, µ, call, ret〉, where Λ is the set
of atomic propositions; U is a set of word positions such that U = {1, . . . , n} if NW
is finite, and U = N if it is a nested ω-word; ‘<’ is the ordering of N; Pa is the set of
positions labeled with a. µ is a binary relation and call and ret are two disjoint unary
relations such that:

• µ(i, j) implies call(i) and ret(j) (a position cannot be both a call and a ret);

• if µ(i, j) and µ(i, j′) hold then j = j′, while if µ(i, j) and µ(i′, j) then i = i′ (i.e., µ
is a one-to-one relation);

• and if i ≤ j and call(i) and ret(j) then there exists a position k such that
i ≤ k ≤ j, and either µ(i, k) or µ(k, j) (so the µ relation is not crossing, e.g. µ(1, 3)
and µ(2, 4) cannot both hold, and unmatched calls and rets cannot be inside a
pair of matched ones).

If µ(i, j) then i is the matching call of j, which is the matching return of i. If call(i)
(resp. ret(j)) but for no j ∈ U (resp. i ∈ U) we have µ(i, j), then i (resp. j) is a
pending call (resp. return).

The syntax of NWTL is given by ϕ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ | #ϕ | #µϕ |
�ϕ | �µϕ | ϕUσ ϕ | ϕ Sσ ϕ, with a ∈ Λ. The semantics of propositional and LTL-like
operators is the usual one. For any i ∈ U, (NW, i) |= call iff call(i) and similarly for
ret; (NW, i) |= #µϕ iff there exists j ∈ U such that µ(i, j) and (NW, j) |= ϕ, while the
meaning of �µϕ is analogous, but it refers to the past. The until and since operators
Uσ and Sσ are based on summary paths. A summary path between i, j ∈ U, i < j, is a

18

1 2 3 4

a

5 6 7 8 9

b

10

#l intm ret .= calll int .= call .= retm ret .= calll call .= retm #
a b

0 1 2 3 4 5 6 7 8 9 10 11

call ret int
call l .

= l
ret .

= m .
=

int .
= m .

=

Figure 8: The top figure is the representation of a nested word example, and its translation into an OPTL
structure is shown below, w.r.t. the OPM MNW at the bottom.

sequence of positions i = i0 < i1 < · · · < in = j such that for any 0 ≤ k < n we have
either ik+1 = h if µ(ik, h) and h ≤ j, or ik+1 = ik + 1 otherwise.

Given any nested word NW as defined above, it is possible to build an equivalent
algebraic structure for OPTL as OW = 〈U′,MNW , P′〉. Given U = {1, . . . , n}, we have
U′ = U∪{0, n+1}. The set of propositional letters is AP = Λ∪Σ with Σ = {call, ret, int}.
For any i ∈ U we define P′(i) = {a ∈ Λ | i ∈ Pa} ∪ σ(i), where σ(i) = {call} iff call(i),
σ(i) = {ret} iff ret(i), and σ(i) = {int} otherwise. Finally, the OPM MNW is shown in
Figure 8. Note that MNW is different from the OPM used in [26] to prove that VPL are
contained in OPL.

An example nested word is shown in Figure 8, along with its translation into an
OP word. In the translation, all the call positions form the context of a chain with the
matched return, except for consecutive positions i, i + 1 ∈ U such that i is a call and
i + 1 a return. Therefore, we are able to use the chain relation to translate the matching
relation of nested words, except for consecutive call/return positions, which have to be
considered separately. Also, unmatched returns and calls form a chain with the first
and last # positions. This reasoning is formalized by the following lemmas.

Lemma 4.1. For any two distinct positions i, j ∈ U, i < j, if χ(i, j) holds then call ∈
P′(i) and ret ∈ P′(j).

Proof. χ(i, j) means i and j are the context of a chain. According to Definition 2.2,
position i must yield precedence to the next position, i + 1: i l i + 1. According to
matrix MNW , only call positions can yield precedence to any other position (unless
∈ P′(i), which is not the case), therefore call ∈ P′(i). Similarly, any position can take
precedence from a return position only, and since j − 1 must take precedence from j,
we have ret ∈ P′(j).

In Lemma 4.2 we prove that relation χ in OW is one-to-one if restricted to U. Note
that this is not true for positions 0 and n + 1: we have χ(0, j) for all j ∈ U that are
unmatched returns, and χ(i, n + 1) for all unmatched calls i ∈ U.

Lemma 4.2. For any i, j, j′ ∈ U if χ(i, j) and χ(i, j′) then j = j′, and for any i, i′, j ∈ U
if χ(i, j) and χ(i′, j) then i = i′.

Proof. Suppose there exists a position i ∈ U such that multiple chains start in i and
end in distinct positions in U, i.e. there exist positions j1, . . . , jn−1, jn ∈ U such that

19

i < j1 < · · · < jn−1 < jn and χ(i, jk) for any 1 ≤ k ≤ n. Then, consider the outermost
chain, χ(i, jn): it must be a composed chain, because it contains the chain χ(i, jn−1).
It must be of the form ai [wia jn−1 . . .]

a jn , hence we have ai l a jn−1 , and wi is the body
of chain ai [wi]a jn−1 . But since χ(i, jn−1), and because of Lemma 4.1 call ∈ P′(i) and
ret ∈ P′(jn−1). Therefore, according to MNW , we have ai

.
= a jn−1 , which contradicts our

previous claim. The fact that there exists no position j ∈ U in which multiple chains
starting in U end can be proved similarly.

Lemma 4.3 shows that, when translating a nested word into an OP word, the µ
relation of the former is reflected into the χ relation that holds in the latter. This is, as
we observed previously, not true for consecutive positions.

Lemma 4.3. For any i, j ∈ U such that j > i + 1, we have µ(i, j) iff χ(i, j).

Proof. The proof is carried out by induction on the nesting depth of the µ/χ relation.
Suppose i, j ∈ U and µ(i, j). If all positions between i and j are internal (i.e. the nesting
depth is 0), then call ∈ P′(i), ret ∈ P′(j) and int ∈ P′(k) for any i < k < j. The resulting
word structure will be i l i + 1 .

= · · · .= j − 1 m j, and χ(i, j). Now, suppose χ(i, j) is a
simple chain. According to MNW , if i l i + 1 then call ∈ P′(i) and int ∈ P′(i + 1), and
similarly int ∈ P′(k) with i < k < j and ret ∈ P′(j): in NW i is a call and j its matched
return, so we have χ(i, j) =⇒ µ(i, j).

Suppose µ(i, j), and there are other call and return positions between i and j. By the
definition of µ, such positions are balanced, i.e., each call between i and j has a match-
ing ret before j. So, the nested word between i and j has the form c0a1x1 . . . xn−1an−1rn

where c0 = i, rn = j, call(c0), ret(rn), and for any p such that 0 < p < n, ap = ε
or it is an internal position, and either xp = ε or xp is a nested word of the form
xp = cpyprp, with call(cp) and ret(rp). Once translated into an OP word, this results
in the composed chain c0 [a1x1 . . . xn−1an−1]rn , so χ(i, j). Indeed, according to our trans-
lation, call ∈ P′(i) and, if a1 , ε, then a1 = i + 1 and int ∈ P′(i + 1), which implies
c0la1; if a1 = ε then i is followed by c1 = i+1 (which is part of x1) and call ∈ P′(i+1),
so c0 l c1. Similarly, either an−1 m rn or rn−1 m rn. Also, each xp forms a chain cp

[
yp

]
rp

by itself, while c0 [a1c1r1 . . . cn−1rn−1an−1]rn is a simple chain.
The fact that if χ(i, j) is a composed chain, then µ(i, j) can be proved analogously,

keeping into account the results of Lemmas 4.1 and 4.2.

The following lemma establishes a correspondence between summary paths in
NWTL and OP Summary paths in OPTL, enabling the translation of NWTL summary
until operators with their operator-precedence counterparts.

Lemma 4.4. Given any two word positions i, j ∈ U, i ≤ j, the summary path between i
and j in NW coincides with the Operator Precedence summary path between the same
positions based on precedence relations � = {l, .=,m} in OW.

Proof. As reported in [12], a summary path between i, j ∈ U, i < j, is a sequence
i = i1 < i2 < · · · < ik = j such that for all p < k

ip+1 =

{
r(ip) if ip is a matched call and j ≥ r(ip); (2)
ip + 1 otherwise; (3)

where r(ip) is the only position such that µ(ip, r(ip)), if it exists.
The definition of Operator Precedence Summary Paths is given in Section 3.1. Note

that, because of Lemma 4.2, we have χ(i, j) ⇐⇒ ←−χ (i, j) ⇐⇒ −→χ (i, j) for any

20

i, j ∈ U, and OP Forward and Backward Summary paths coincide. Moreover, due to
Lemma 4.3, χ(i, j) ⇐⇒ µ(i, j) if j > i + 1: case 2 of the definition above coincides
with the first case of Definition 3.1. If j = i + 1 and µ(i, j), χ(i, j) does not hold, but
this case is subsumed by the second case of Definition 3.1. The latter also incorporates
case 3 of the definition of summary path in NWTL, because set � includes all possible
precedence relations. Since we have proved that the two definitions coincide for each
single step of the path, it is possible to inductively prove that the two kinds of paths
actually coincide.

After establishing a certain degree of isomorphism between nested words and their
OPTL translations, we can give a translation schema from NWTL to OPTL formulas.

Theorem 4.5 (NWTL ⊆ OPTL). Given an NWTL formula ϕ, it is possible to translate
it to an OPTL formula ϕ′ of length linear in |ϕ| such that, for any nested word w and
position i, if w is translated into an OP structure w′ as described at the beginning of
Section 4, then (w, i) |= ϕ iff (w′, i) |= ϕ′, with i ∈ U.

Proof. Let w′ be an OP word built from w as described above. For any NWTL formula
ϕ we define ϕ′ = α(ϕ) inductively as follows, for non-trivial operators:

• α(#µϕ) = #χα(ϕ)∨(call∧#(ret∧α(ϕ))). The validity of this translation trivially
follows from Lemma 4.3. Unfortunately, the double repetition of α(ϕ) may cause
an exponential blowup in the worst-case length of the translation.

The following more complex translation does not suffer from this issue: α(#µϕ) =

call ∧ callU .
= (ret ∧ α(ϕ)). To better explain it, let γ := callU .

= (ret ∧ α(ϕ)).
In NWTL we have (w, i) |= #µϕ iff there exists j ∈ U such that µ(i, j) and
(w, j) |= ϕ. When referring to the OP structure, we must distinguish between a
few mutually exclusive cases:

– A position j such that µ(i, j) exists and j > i + 1. Then, by Lemma 4.3
also χ(i, j) holds and, because of Lemma 4.2, we have −→χ (i, j). Consider
the path only made of i and j: it is an OP summary path, because it falls
in the first case of the definition. Since by construction call ∈ P′(i) and
ret ∈ P′(j), if α(ϕ) holds in j, then γ is satisfied. Furthermore, this is the
only path in which γ is true; in fact, paths terminating in a position strictly
between i and j are forbidden by allowing only the .

= relation, and all paths
surpassing j must include it, but call < P′(j) falsifies γ.

– A position j such that µ(i, j) exists, but j = i + 1. In this case, we have
call ∈ P′(i) and ret ∈ P′(j), so i .= j, and the path made of i and j is valid.

– i is a pending call. Then χ(i, n + 1), but ret < P′(n + 1), which falsifies γ.

– i is an internal position. (w, i) 6|= #µϕ because position i is not a matched
call, so int ∈ P′(i) and γ is false because call, ret < P′(i).

– i is a return. If ret(i), then call in α(#µϕ) is false in i.

• α(�µϕ) = ret ∧ ret S .= (call ∧ α(ϕ)). The argument that justifies this equiva-
lence is similar to the previous one. Again, the more straightforward translation
α(�µϕ) = �χα(ϕ) ∨ (ret ∧ �(call ∧ α(ϕ))) causes an exponential blowup in
formula length.

21

• α(ϕUσψ) = α(ϕ)Um .=lα(ψ): from Lemma 4.4 we know that the set of summary
paths starting from position i in w corresponds to the set of OP summary paths
starting from i in w′, which implies the OP summary operators coincide with
their NWTL counterparts.

• α(ϕ Sσ ψ) = α(ϕ) Sm .=l α(ψ): the justification is analogous to the until case.

By induction on the syntactic structure of ϕ, we can conclude that (w, i) |= ϕ iff (w′, i) |=
ϕ′, and consequently NWTL ⊆ OPTL.

For example, consider formula ϕ = (¬a)Uσ b: the nested word of Figure 8 satisfies
ϕ because of summary path 1-2-3-7-8-9. ϕ is translated into ϕ′ = (¬a)Um .=l b, which
is satisfied by the OPTL structure of Figure 8, where the OP summary path covering
the same positions above witnesses its truth.

The above translation can easily be extended to ω-words, which are treated in Sec-
tion 6.

It is easy to see that the OPTL semantics of Section 3.2 is expressible in First-Order
(FO) Logic, so OPTL ⊆ FO. Thus, by the FO-completeness result for NWTL of [12],
we conclude

Corollary 4.6. If OPTL is restricted to OPM MNW , we have OPTL = NWTL = FO.

This does not mean that OPTL has the same expressive power of NWTL. In fact, the
greater expressiveness of OPTL derives from that of OPL w.r.t. VPL, and it consists
in using more general OPMs, such as Mcall. In general, OPTL formulae exploiting
the fact that the χ relation is not exclusively one-to-one, such as those pointed out
in Section 3.3, express properties not expressible in NWTL. Thus, we can state the
following:

Corollary 4.7. NWTL ⊂ OPTL.

5. Model Checking Operator Precedence Languages

Given a set of atomic propositions AP, an OPM MP(AP), and an OPTL formula ϕ
containing atomic propositions in AP, we explain how to build a nondeterministic OPA
Aϕ accepting the finite strings on P(AP) satisfying ϕ, compatible with MP(AP). The
way to extend this definition to infinite words is nontrivial, and we detail it in Section 6.

Let Aϕ = 〈P(AP),MP(AP),Atoms(ϕ), I, F, δ〉 be an OPA, with MP(AP) being an
OPM, and Atoms(ϕ) being the set of states. The construction of this OPA follows the
classical lines for LTL and the subsequent ones for NWTL, but it requires many more
nontrivial technicalities, due to the more general structure provided by the OPM w.r.t.
the linear and the VPL structures. A set called closure and denoted by Cl(ϕ) is defined,
and it contains all possible subformulas of ϕ, plus some additional auxiliary operators
(in set Claux(ϕ)), which will be introduced later in this section. The set Atoms(ϕ) only
contains logically consistent subsets of Cl(ϕ). The notion of consistency depends on
the semantics of each operator, and we define it separately for each one of them in the
following sections, together with constraints on the transition relation δ, which enforce
the temporal requirements.

The correctness, i.e., soundness and completeness, proof of this procedure is given
in Section 5.9. It is carried out by induction on the syntactic structure of ϕ, so we
prove the correctness of the construction for each operator separately, together with the
related construction rules.

22

5.1. LTL Operators

We first describe how the OPA is built for LTL-like operators, which is done with
the classic procedure of [37], and then treat other operators separately. Initially, the
closure Cl(ϕ) of a formula ϕ is defined as the smallest set such that

1. ϕ ∈ Cl(ϕ),

2. AP ⊆ Cl(ϕ),

3. if ψ ∈ Cl(ϕ) and ψ , ¬θ for any OPTL formula θ, then ¬ψ ∈ Cl(ϕ);

4. if any of ¬ψ, #ψ or �ψ is in Cl(ϕ), then ψ ∈ Cl(ϕ);

5. if any of ψ ∧ θ or ψ ∨ θ is in Cl(ϕ), then ψ ∈ Cl(ϕ) and θ ∈ Cl(ϕ).

6. if ψU θ ∈ Cl(ϕ), then ψ, θ,#(ψU θ) ∈ Cl(ϕ).

We will further enrich Cl(ϕ) with auxiliary operators when dealing with non-LTL op-
erators. We denote Claux(ϕ) ⊂ Cl(ϕ) the set of such operators.

The set Atoms(ϕ) contains all consistent sets Φ ⊆ Cl(ϕ), i.e., such that

1. for every ψ ∈ Cl(ϕ), ψ ∈ Φ iff ¬ψ < Φ;

2. if ψ ∧ θ ∈ Φ, then ψ ∈ Φ and θ ∈ Φ;

3. if ψ ∨ θ ∈ Φ, then ψ ∈ Φ or θ ∈ Φ;

4. if ψU θ ∈ Φ, then either θ ∈ Φ, or ψ ∈ Φ and #(ψU θ) ∈ Φ; the rules for the
linear since operator are analogous.

The set of initial states I consists only of atoms containing ϕ, but with no � or S
formula. The set of final states F contains all atoms Φ ∈ Atoms(ϕ) not containing any
or U formula, so no word terminating with unsatisfied temporal requirements can
be accepted, and such that AP∩Φ = {#}, so the last position of each word must contain
the terminal symbol only.

Satisfaction of temporal constraints is achieved by the transition relation δ. For any
Φ,Θ ∈ Atoms(ϕ) and a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift:

1. for any p ∈ AP, p ∈ Φ iff p ∈ a;

2. #ψ ∈ Φ iff ψ ∈ Θ;

3. �ψ ∈ Θ iff ψ ∈ Φ, for any formula ψ.

Since only push and shift transitions read terminal symbols, they fulfill next and back
requirements. Pop transitions are important for checking operators depending on the
chain relation, but for the moment we prevent them from removing sub-formulas intro-
duced in a previous state by other transitions: for any Φ,Θ,Ψ ∈ Atoms(ϕ), (Φ,Θ,Ψ) ∈
δpop only if Ψ is the smallest set such that Φ \ Claux(ϕ) ⊆ Ψ, and for any p ∈ AP, p ∈ Φ

iff p ∈ Ψ. Ψ may also contain additional formulas required by the rules detailed in the
next sections.

23

5.2. Matching Next (#χ) Operator

The #χ and �χ operators are defined w.r.t. maximal chains: the main difficulty
posed by their model-checking is building automata able to discern them from inner
chains, when multiple chains start in the same position. To do so, we exploit the fol-
lowing property of OPA:

Lemma 5.1. Let M be an OPM, and w an OP word structure on it such that χ(i, j), for
some positions i, j ∈ w. LetA be an OPA on M.

• If −→χ (i, j), then A performs a pop or a shift transition after the last pop of the
support of χ(i, j).

• If ←−χ (i, j), then A performs a push or a shift transition after the last pop of the
support of χ(i, j).

Proof. A reads position i with a push or a shift move, hence α, the topmost stack
symbol before the support of χ(i, j) starts, contains the label of i. By Definition 2.5, the
support of χ(i, j) ends with a pop move, with the label of j as the next input symbol.
After such move, α is on top of the stack. If −→χ (i, j), by definition of forward-maximal
chain, either im j, and α is popped, or i .= j, and α is updated by the shift move reading
j. If←−χ (i, j), either i l j or i .= j, so j is read by, resp., a push or a shift transition.

In the following, by saying that a chain starts (resp. ends) in a position i, we mean i
is its left (resp. right) context, i.e. χ(i, j) (resp. χ(j, i)) for some j. In this construction,
we introduce two of the auxiliary symbols in Claux(ϕ) we mentioned before. The OPA
for model-checking #χ relies on the stack in order to keep track of its requirements:
if a formula #χψ holds in a state where a maximal chain begins, the automaton stores
the auxiliary symbol #s

χψ onto the stack, and pops it when that chain ends, forcing ψ
to hold in the appropriate state.

Formally, if #χψ ∈ Cl(ϕ), then we add ψ ∈ Cl(ϕ) and #s
χψ,#

end
χ ψ ∈ Claux(ϕ). Also,

we enrich the previous constraints on δ as follows: for any Φ,Θ,Ψ ∈ Atoms(ϕ) and
a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift, then

1. #χψ ∈ Φ iff #s
χψ ∈ Θ;

2. if #χψ ∈ Φ, then #end
χ ψ < Θ;

let (Φ, a,Θ) ∈ δshift or (Φ,Θ,Ψ) ∈ δpop, then

3. #end
χ ψ ∈ Φ iff ψ ∈ Φ;

4. #s
χψ < Φ;

let (Φ,Θ,Ψ) ∈ δpop, then

5. #s
χψ ∈ Θ iff #s

χψ ∈ Ψ or #end
χ ψ ∈ Ψ.

Finally, for any formula #χψ ∈ Cl(ϕ), we must exclude from F all atoms containing
#s
χψ or #χψ.

Before formally proving the correctness of this construction, we explain how it
works by means of the example run of the automaton for formula #χc of Figure 9.
In the following, structural labels are typeset in bold. #χc holds in the initial state:
since the symbol # yields precedence to all other symbols, the first one (namely {a})
is consumed by a push transition. Then, by rule 1, the OPA transitions to a state q1

24

a b c
a m l .

=

b m m m
c m m l

l a l b m b m c m
0 1 2 3 4 5

(a)

·

·

a ·

·

b

b

c

#

(b)

step input state stack relation next move rule
1 a l b m b m c m # q0 = {a,#χc} ⊥ # l a push 1, 2
2 b m b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
3 b m c m # q2 = {b} [b, q1][a, q0]⊥ b m b pop 5
4 b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
5 c m # q3 = {c} [b, q1][a, q0]⊥ b m c pop 5
6 c m # q4 = {c,#end

χ c} [a, q0]⊥ a .
= c shift 3, 4

7 # q5 = {#} [c, q0]⊥ c m # pop –
8 # q5 ⊥ # .

= # – –

(c)

step input state stack relation next move rule
1 a l b m b m c m # q0 = {a,#χc} ⊥ # l a push 1, 2
2 b m b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
3 b m c m # q2 = {b} [b, q1][a, q0]⊥ b m b pop 5
4 b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
5 c m # q3 = {c} [b, q1][a, q0]⊥ b m c pop 5
6 c m # q6 = {c,#s

χc} [a, q0]⊥ a .
= c shift 4

(d)

q0

a,#χc
q1

b,#s
χc

q2

b

q3

c
q4

c,#end
χ c

q5

#

q6

c,#s
χc

a

b

q1

b

q1 cq1

(e)

Figure 9: An OPM and word abbc (9a), its AST (9b), an accepting run of the OPA for formula #χc on it
(9c), a non-accepting one (9d), and the part of the OPA involved in such runs (9e). Note that the whole OPA
has 64 states and a much denser transition relation. The OPA states are represented both explicitly as atoms
and with a numeric identifier (e.g. qi), for clarity. We write a instead of {a} for singletons containing one
structural label.

25

step input state stack relation next move rule
1 a l b m b m c m # q0 = {a,#χc} ⊥ # l a push 1, 2
2 b m b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
3 b m c m # q2 = {b} [b, q1][a, q0]⊥ b m b pop 5
4 b m c m # q1 = {b,#s

χc} [a, q0]⊥ a l b push –
5 c m # q3 = {c} [b, q1][a, q0]⊥ b m c pop 5
6 c m # q4 = {c,#end

χ c} [a, q0]⊥ a m c pop 3, 4
7 c m # q3 ⊥ # l c push –
8 # q5 = {#} [c, q3]⊥ c m # pop –
9 # q5 ⊥ # .

= # – –

Figure 10: An accepting run on the OP word of Figure 9, but with an OPM that only differs because {a}m {c}.

containing the auxiliary operator #s
χψ. The latter is kept in either the current state or a

stack symbol until the temporal requirement of #χc is satisfied. A chain starts in {a},
so the next symbol {b} is also read by a push transition, which stores the previous state
q1, containing #s

χc, on the stack (step 2-3 of Figure 9c). Then, the chain ends with the
second {b} symbol, and state q1 is popped. c, the operand of #χ, must hold at the end
of the maximal chain, and this is not maximal. However, the OPA still cannot discern
between the two cases, and must wait for the next transition to occur.

So, the OPA nondeterministically guesses that this is not a maximal chain by transi-
tioning to a state (q1) not containing #end

χ ψ, which would mark the end of such a chain.
By rule 5, #s

χc is instead present in q1 (step 3-4). By Lemma 5.1, the automaton per-
forms a shift or a pop move when it encounters the right context of a forward-maximal
chain, and the topmost stack symbol contains its left context.

In step 4, the topmost stack symbol contains {a} (the left context of the chain), but
{a} l {b}, so the next transition is a push, meaning {b} is the right context of a non-
maximal chain. Thus, the current state q1, containing #s

χc, is again pushed on stack
(step 4-5).

Between steps 5-6 the OPA nondeterministically guesses the end of the maximal
chain, and by rule 5 #end

χ ψ ∈ q4. In step 6, the symbol containing {a} is, again, on top
of the stack. Since {a} .= {c}, the next transition is a shift, meaning the chain between
{a} and {c} is maximal. The transition relation is constrained by rule 3 so that this
shift transition cannot occur unless also c is present in the same state, fulfilling the
temporal requirement of #χc. This is the case in Figure 9c, so the computation goes
on, accepting the input word.

Instead, runs that took the wrong guess, such as the one of Figure 9d, cannot con-
tinue. By rule 4, the shift transition relation is only defined if the starting state does not
contain #s

χc. Since #s
χc ∈ q6, the relation is undefined, and this run stops.

If we had {a}m {c}, a pop move would take place instead of the final shift, and rules
3 and 4 would still hold. Figure 10 shows an accepting run on such a word.

Notice how the OPA exploits its own semantics to discern between maximal and
non-maximal chains: by Lemma 5.1, a pop followed by a push corresponds to the end
of a non-maximal chain, and a pop followed by a pop or a shift to the end of a maximal
chain. Which kind of transition is performed only depends on precedence relations
between input symbols, and not on the current state of the automaton. Thus, it suffices
to build the transition relation so that, when the pop or shift move revealing the end
of a maximal chain occurs, only runs satisfying the argument of #χ in that position
may continue (rules 3 and 4). All other rules are needed to keep track of such temporal
requirements until they are satisfied.

26

·

·

·

a ·

·

·

...

·

· b1

bn−1

bn

d

#

x z

u0

un

un−1

u1

·

·

·

·

a ·

·

·

...

·

· b1

bn−1

bn

d

#

x z

u0

un

un−1

u1

l x �x a l u0 m b1 �1 u1 m . . . m bn−1 �n−1 un−1 m bn �n un m d �z z m
0 i ib1 ibn−1 ibn j

.
=/m

ll
l

Figure 11: The two possible ASTs of a generic OP word w = xyz (top), and its flat representation with chains
(bottom). Wavy lines are placeholders for subtree frontiers. We have either a .

= d (top left), or a m d (top
right). In both trees, a l bk for 1 ≤ k ≤ n, and the corresponding word positions are in the chain relation.
For 1 ≤ k ≤ n, uk is the word generated by the right part of the rhs whose first terminal is bk . So, either
bk [uk]bk+1 , or uk is of the form vk

0ck
0vk

1ck
1 . . . c

k
mk

vk
mk+1, where ck

p
.
= ck

p+1 for 0 ≤ p < mk , bk
.
= ck

0, and resp.

ck
mk

m bk+1 and cn
mn m d (cf. Figure 12). Moreover, for each 0 ≤ p < mk , either vk

p+1 = ε or ck
p [vk

p+1]ck
p+1 ;

either vk
0 = ε or bk [vk

0]ck
0 , and either vk

mk+1 = ε or ck
mk [vk

mk+1]bk+1 (resp. cn
mn [vn

mn+1]d). u0 has this latter form,

except v0
0 = ε and a l c0

0. In the bottom representation, �s are placeholders for precedence relations, that
depend on the surrounding characters.

27

·

·

... bk · ck
0

· ck
1

. . .

. . .

ck
mk

·

bk+1

vk
0 vk

1 vk
mk

uk+1

. . . m bk l vk
0 m ck

0 l vk
1 m ck

1 . . . ck
mk

l vk
mk

m bk+1 �k+1 uk+1

ibk ibk+1

.
=

.
= ml
l

Figure 12: The structure of uk in the word of Figure 11.

The correctness of the construction is proved in Lemma 5.2. In its proof, we use
Figure 11, which represents as ASTs the two possible structures that a generic OP
word w = xyz with a forward-maximal chain may have, depending on the precedence
relations. In it, dots are non-terminal symbols, and each one of them corresponds to
a chain, whose contexts are the surrounding terminals. a and d 3 are the contexts of a
maximal chain, and in the left AST we have a .

= d, and a m d in the right one. y is the
sub-word between a and d, and it represents a maximal chain with a generic body. The
leftmost branch of the AST of such body is expanded, to show all non-maximal chains
whose left context is a. Indeed, the chain relation holds between a and all terminals bk,
1 ≤ k ≤ n, and a l bk. Sub-words uk, are the remaining parts of the rhs starting with
bk, and they can be of any form: they may be empty, or the body of a chain between bk

and bk+1, or a more generic rhs, as shown in Figure 12. u0 is the body of the innermost
chain whose left context is a. In order to understand the proof of Lemma 5.2, the reader
should familiarize with the way an OPA would read such a word. In general, a could
be read by a shift or a push move. Then, the first terminal of u0 is read by a push move,
and the pushed stack symbol is popped only when b1 is reached, since u0 is read by
only pushing and popping other stack symbols. b1 is then read by another push, and the
corresponding push symbol is popped when reaching b2, and so on. When d is reached,
the stack symbol corresponding to bn is popped and, if a m d, also the symbol pushed
or updated when reading a is popped, while if a .

= d, such symbol is just updated by a
shift move.

Lemma 5.2. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP al-
phabet, ψ an OPTL formula on it, andA#χψ an OPA satisfying rules 1-5 of Section 5.2.

3Recall that italic symbols represent subsets of AP, whose precedence relations are determined by the
structural labels they contain.

28

For any word w = #xyz# on (P(AP),MP(AP)), let position i = |x| + 1 in w: we have

(w, i) |= #χψ

if and only if A#χψ performs one computation that brings it from configuration C0 =

〈yz,Φ, αγ〉 with #χψ ∈ Φ to 〈z,Φ′, α′γ〉, such that #s
χψ,#

end
χ ψ < Φ′, |α| = 1 and

|α′| ≤ 1.
Moreover, if (w, i) |= #χψ, all accepting computations ofA#χψ pass through C0.

Proof. [⇒] If #χψ holds in i, then w is in the form of Figure 11: at least one chain
starts in i, and ψ holds in the position j such that −→χ (i, j).

In the following, we denote as Φa (resp. Φx) the state of the automaton right before
reading symbol a ∈P(AP) (resp. x ∈P(AP)+). Suppose the OPA is in configuration
C0 = 〈a . . . z,Φa, [f ,Φ f]γ〉, where a = Φa ∩ AP, α = [f ,Φ f]. The OPA guesses that
#χψ holds in the current position, so #χψ ∈ Φa. Symbol a is read by either a push
or a shift transition, depending on the precedence relation between f and it. The new
configuration is 〈c0

0 . . . z,Φc0
0
, σ〉, where σ = [a,Φ f]γ if f .

= a, and σ = [a,Φa][f ,Φ f]γ
if f l a. Due to rule 1, we have #s

χψ ∈ Φc0
0
. Now, since a l c0

0, the next move is
a push, and the resulting configuration is 〈v0

1 . . . z,Φv0
1
, [c0

0,Φc0
0
]σ〉. Then, if v0

1 , ε,

the automaton reads it. Since c0
0 [v0

1]c0
1 is a chain, it eventually comes to a configu-

ration 〈c0
1 . . . z,Φc0

1
, [c0

0,Φc0
0
]σ〉. If v0

1 = ε the automaton reaches this configuration
right after reading c0

0, skipping the previous one. Because c0
0
.
= c0

1, a shift transition
occurs, leading to configuration 〈v0

2 . . . ,Φv0
2
, [c0

1,Φc0
0
]σ〉. After reading the rest of u0,

the automaton comes to a configuration 〈b1 . . . z,Φb1 , [c
0
m0
,Φc0

0
]σ〉 (note that m0 = 0

may hold as well). Since c0
m0

m b1, the topmost stack symbol is popped, leading to
the configuration 〈b1u1 . . . z,Φ′b1

, σ〉. However, #s
χψ ∈ Φc0

0
, and due to rule 5, either

#s
χψ ∈ Φ′b1

or #end
χ ψ ∈ Φ′b1

. Here, the OPA nondeterministically guesses that this pop
move is related to the end of a non-maximal chain, so #s

χψ ∈ Φ′b1
and #end

χ ψ < Φ′b1
.

The topmost stack symbol now contains the terminal symbol a, and a l b1. So a push
move brings the automaton to configuration 〈u1 . . . z,Φu1 , [b1,Φ

′
b1

]σ〉, with #s
χψ ∈ Φ′b1

.
Then, the automaton reads u1 in a way similar to u0. In particular, note that the stack
symbol [b1,Φ

′
b1

] is not popped until the automaton reaches b2, when a pop transition
propagates #s

χψ from Φ′b1
to the new state, due to another nondeterministic guess.

This process continues similarly for each bk and uk, until configuration Cd =

〈dz,Φd, [c,Φbn]σ〉, where either c = cn
mn

or c = bn, and #s
χψ ∈ Φbn , is reached. Since

in both cases c m d, a pop transition brings the automaton to configuration 〈dz,Φ′d, σ〉,
where #s

χψ ∈ Φbn . This time, the OPA guesses that this is the end of a maximal chain,
so we have #end

χ ψ ∈ Φ′d (by rule 5), and ψ ∈ Φ′d. Now, the topmost stack symbol is
[a,Φa] or [a,Φ f]. Suppose amd: the next transition is a pop, which leads to 〈dz,Φ′′d , γ〉
or 〈dz,Φ′′d , [f ,Φ f]γ〉, depending on the type of the move that previously read a. Due to
rule 3, this transition can be performed iff ψ is also contained in Φ′d. Note that subse-
quent pop transitions cannot drop ψ, and propagate it until the push or shift transition
that reads d. They can, however, drop #end

χ ψ, because it is in Claux(ϕ), reaching a con-
figuration in which neither #s

χψ nor #end
χ ψ is in the current state. In this case, either

α′ = ε or α′ = [f ,Φ f], respectively, so |α′| ≤ 1.
Conversely, if a .

= d, then the next transition is a shift reading d, which leads to
either 〈z,Φ′′d , [d,Φ f]γ〉 or 〈z,Φ′′d , [d,Φa][f ,Φ f]γ〉. This transition is defined, according
to rule 3. In the former case, α′ = [d,Φ f]. For the latter note that #end

χ ψ can be nonde-
terministically dropped from Φ′′d during the shift. So, even in this case the automaton

29

will eventually reach a configuration in which [d,Φa] is popped, and neither #end
χ ψ nor

#s
χψ is present in the current state, fulfilling the thesis statement with α′ = [f ,Φ f].

Note that this behavior agrees with Lemma 5.1.
Suppose the OPA takes the wrong guess that #χψ does not hold in i, and reads i

from a configuration C′0 in which #χψ < Φa. Then, #s
χψ is not inserted into the next

state by rule 1 and propagated, so the OPA reaches Cd with #s
χψ < Φbn . However,

ψ is present in the next state and, by rule 3, also #end
χ ψ. A subsequent pop transition

would contradict rule 5, and the computation is blocked. This proves all accepting
computations make the right guess, and pass through C0.

[⇐] Suppose the OPA reads subword y with a computation as stated in the thesis.
By contradiction, we also come to the conclusion that w is in the form of Figure 11.

Indeed, if no chain started in i, then w would be of the form

l . . . a � d . . . m
0 . . . i (i + 1) . . . n

where either a .
= d or a m d. Suppose the OPA is in configuration 〈adz,Φa, αγ〉, with

a = Φa ∩ AP, #χψ ∈ Φa, α = [f ,Φ f], f ∈P(AP), before reading position i. a is read
by the automaton with either a push (if f l a) or a shift (if f .

= a) move. Due to rules
1 and 2, it transitions to a configuration 〈dz,Φd, [a,Φa][f ,Φ f]γ〉 or 〈dz,Φd, [a,Φ f]γ〉,
respectively, in both cases with #s

χψ ∈ Φd, and #end
χ ψ < Φd. If a .

= d, then d is
consumed by a shift transition. However, #s

χψ ∈ Φd, contradicting rule 4. So, the shift
relation starting from state Φd is undefined. The same can be said if a m d. Therefore,
no computation of the automaton can read the subword y = ad starting from a state
containing #χψ, which contradicts our hypothesis that such a computation exists. Thus,
we can continue the proof with respect to the word structure of Figure 11.

Let Φ be the state of the OPA before reading position i (as in the statement), and
Θ the next one, pushed when reading the first input symbol of the body of the chain
starting in i. For the automaton to reach a configuration in which the stack has the same
length as before reading i plus at most 1, the stack symbol containing Θ must have been
popped. Since, by hypothesis, #χψ ∈ Φ, by rule 1, #s

χψ must be in Θ. By rule 5, #s
χψ

or #end
χ ψ must be present in the target state Ψ of that pop move. They can only be

dropped by a subsequent shift or pop move, while a push would increase the stack size
again. But, by rule 4, such a move can only occur if #s

χψ < Ψ, so #end
χ ψ ∈ Ψ. If a

shift or a pop transition occurs, since the topmost stack symbol is the one containing
the input symbol in i, it means i is in the .

= or m relation with the current position. So,
the end of the maximal chain starting in i has been reached (cf. Lemma 5.1), and by
rule 3 ψ holds in it, satisfying #χψ in i.

5.3. Matching Back (�χ) Operator
Here we report the additional rules needed to build an OPA accepting sentences

satisfying �χψ. Note that this construction is radically different from the one for the
#χ operator, despite the two operators being the dual of each other. This is due to the
asymmetric behavior of OPA, which read an input symbol with every push transition
at the beginning of a chain, but read none during pop moves, at the end of chains.

If �χψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ) and �s
χψ,�

end
χ ψ ∈ Claux(ϕ). For any Φ,Θ,Ψ ∈

Atoms(ϕ) and a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift:

1. �χψ ∈ Φ iff �s
χψ ∈ Φ;

30

2. �end
χ ψ ∈ Θ iff ψ ∈ Φ;

3. �s
χψ < Θ;

let (Φ,Θ,Ψ) ∈ δpop:

4. �s
χψ ∈ Ψ iff �s

χψ ∈ Θ or �end
χ ψ ∈ Θ;

5. �end
χ ψ < Ψ.

Also, if Φ ∈ I, then �χψ < Φ.
This construction exploits the fact that the last stack symbol to be popped before

reading the right context of a backward-maximal chain is the one pushed when reading
the first symbol of the body of the underlying simple chain (cf. Definition 2.5 and
Lemma 5.1). Say �χψ holds in state Φ ∈ Atoms(ϕ), and d ⊆ AP is the next symbol
to be read, while a ⊆ AP is the left context of the maximal chain whose right context
is d: then ψ must hold in a. First, rule 1 enforces the auxiliary symbol �s

χψ in Φ,
which is the target state of the last pop transition before d. By rule 4, �s

χψ or �end
χ ψ

must be inserted into Θ, the stack symbol it pops. Θ is the state pushed when reading
b ⊆ AP, the first symbol of the body of the simple chain underlying the maximal one.
If �end

χ ψ ∈ Θ, b is the first symbol after a, and Θ is the target state of the push or shift
transition reading a itself (in fact, by rule 5, Θ cannot be the target state of a pop). By
rule 2, ψ must hold in the starting state of this transition, which is the one containing
formulas that hold in a. If, instead, a and b are the contexts of an inner chain, we have
�s
χψ ∈ Θ, and �s

χψ is propagated by rule 4 backwards, until it reaches the symbol right
after a.

In practice, when ψ holds in a position, the OPA guesses whether that is the left
context of a backward-maximal chain or not, by transitioning to a state containing
�end
χ ψ or not. The guess is verified when reaching the right context of the chain, if any.

The correctness of the constraints above is ensured by the following lemma.

Lemma 5.3. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP al-
phabet, ψ an OPTL formula on it, andA�χψ an OPA satisfying rules 1-5 of Section 5.3.
For any word w = #xyz# on (P(AP),MP(AP)), let position j = |xy| in w: we have

(w, j) |= �χψ

if and only if A�χψ performs one computation that brings it from configuration C0 =

〈yz,Φ, αγ〉 such that �s
χψ,�

end
χ ψ < Φ to a configuration 〈z,Φ′, α′γ〉 such that |α| = 1,

|α′| ≤ 2, and �χψ ∈ Φ j, where Φ j is the state of the automaton before reading j.
Moreover, if (w, j) |= �χψ, then �χψ ∈ Φ j in all accepting computations ofA�χψ.

Proof. [⇒] If �χψ holds in j, then at least one chain must end there. Therefore, w
must have the form of Figures 11 and 15, except a l d or a .

= d (but not a m d). In the
figures, i is the position such that←−χ (i, j). The other chains possibly starting from i and
ending in positions ibk , 1 ≤ k ≤ n, such that ←−χ (i, ibk), are also highlighted. Note that
there might also be multiple chains ending in j, and in each one of the ibk s, forming the
structure shown in Figure 15. However, we do not need to analyze them in this proof,
so the left AST of Figure 11, where they are hidden in vn

mn+1, suffices.
Figure 13 partially shows the behavior of the automaton we now describe. Suppose

the automaton is in configuration 〈a . . . z,Φa, [f ,Φ f]γ〉, where α = [f ,Φ f], and ψ ∈ Φa.
Depending on whether f .

= a or f l a, the next move is either a push or a shift.
In both cases, due to rule 2, the next configuration is 〈c0

0 . . . z,Φc0
0
, σ〉 with �end

χ ψ ∈

31

a c0
0 v0

1 c0
1 . . . c0

m0
v0

m0+1 b1 v1
0 c1

0 . . . bn . . . d

ψ �end
χ ψ

�s
χψ

�χψ
�s
χψ

�χψ
�s
χψ

�χψ

· · · · · · · · · · · · · · · · · ·
f

Φ f

c0
0

�end
χ ψ

c0
0

�end
χ ψ

c0
1

�end
χ ψ

c0
1

�end
χ ψ

c0
m0

�end
χ ψ

b1
�s
χψ

b1
�s
χψ

c0
1

�s
χψ

bn
�s
χψ

γ σ σ σ σ σ σ σ σ σ σ σ σ γ

l l m l m l m l m l m l m

l/ .=

l

l
.
= .

=
.
=

Figure 13: Illustration of the execution of the automaton for �χψ on part of the OP word of Figure 11, in
the case a .

= d (top left of Figure 11), or a l d (not shown in Figure 11). On the bottom, the stack contents
before reading each terminal symbol are shown. Right above them, the relevant subformulas (such as �s

χψ)
are shown whenever they are contained in the state right before reading the terminal above.

Φc0
0
. Next, c0

0 is read by a push, leading to 〈v0
1 . . . z,Φv0

1
, [c0

0,Φc0
0
]σ〉, with �end

χ ψ ∈
Φc0

0
. The state contained in the topmost stack symbol then remains untouched until

configuration 〈b1 . . . z,Φb1 , [c
0
m0
,Φc0

0
]σ〉 is reached (cf. proof of Lemma 5.2). Now,

c0
m0
mb1, and a pop move occurs: 〈b1 . . . z,Φ′b1

, σ〉. Since �end
χ ψ ∈ Φc0

0
, all computations

are such that #s
χψ ∈ Φ′b1

, which satisfies rule 4. Then, b1 is read by a push, leading to
〈v1

0 . . . z,Φv1
0
, [b1,Φ

′
b1

]σ〉, and now �s
χψ is in the topmost stack symbol. By rule 1, this

push may occur only if, by a nondeterministic guess, �χψ ∈ Φ′b1
. This guess is correct,

since b1 also satisfies �χψ.
The same reasoning can be extended to each bk, 1 ≤ k ≤ n, by replacing �end

χ ψwith
�s
χψ, proving that there exists a computation that leads the automaton to 〈dz,Φd, [cn

mn
,Φbn]σ〉,

with �s
χψ ∈ Φbn . A pop move occurs: 〈dz,Φ′d, σ〉. By rule 4, we have �s

χψ ∈ Φ′d. Now,
the symbol on top of the stack is a. Suppose a .

= d: the next move is a shift leading
to 〈z,Φz, [d,Φa| f]ζ〉, with either Φa| f = Φa and ζ = [f ,Φ f]γ, or Φa| f = Φ f and ζ = γ,
depending on the kind of move reading a. In the former case, α′ = [d,Φa][f ,Φ f], in
the latter α′ = [f ,Φ f], which both satisfy the thesis statement. By rule 1, this shift
may occur only if �χψ ∈ Φ′d due to a nondeterministic guess. If, instead, a l d, then
the next move is a push. In this case, the proof is analogous, because push and shift
transitions share the same rules. Note that it cannot be a m d (cf. Lemma 5.1), or the
chain starting in a would not be the backward-maximal one ending in d.

By the above argument, it is also clear that any computation with ψ ∈ Φa must
place �χψ in Φ j = Φd, or it is blocked by rule 1, and cannot be accepting.

[⇐] If a computation as in the thesis statement exists, then position j must be the
right context of at least one chain. By contradiction, suppose this is not true: w must
be of the form shown below, with either e .

= d or e l d.

l . . . e � d . . . m
0 . . . (j − 1) j . . . n

The automaton reads e and d with two consecutive push or shift transitions. Suppose

32

without loss of generality that they are both push moves (the rules for shift moves are
the same). They bring the automaton from 〈edz,Φe, σ〉 to 〈dz,Φd, [e,Φe]σ〉 and then
to 〈z,Φz, [d,Φd][e,Φe]σ〉. If �χψ ∈ Φd, then by rule 1 �s

χψ ∈ Φd. But Φd is the target
state of the previous transition, which cannot be part of δ because it violates rule 3.

The fact that �χψ holds in j follows from the fact that the computation reads po-
sition j from a state containing �χψ. Due to rule 1, every computation such that
�χψ ∈ Φ j can go on reading j only if �s

χψ ∈ Φ j. Also, we already proved that at
least one chain ends in j. So the move reading j is preceded by a pop, which must
remove from the stack a symbol whose state contains �s

χψ or �end
χ ψ (rule 4). Consider

the move that pushed this symbol. If the symbol contains �s
χψ, by rule 3 it must be

preceded by a pop, again of a symbol containing �s
χψ or �end

χ ψ. If the symbol contains
�end
χ ψ, by rule 5 the push must be preceded by another push or a shift move, so the

beginning of the backward-maximal chain ending in j has been reached. Since this
push/shift move brings the automaton to a state containing �end

χ ψ, by rule 2 ψ holds,
and so does �χψ in j.

5.4. Summary Until (U�) or Since (S�) Operator
For any � ⊆ {l, .=,m}, if ψU�θ ∈ Cl(ϕ) then ψ, θ,#χ(ψU�θ),#(ψU�θ) ∈ Cl(ϕ).

Also, for any Φ ∈ Atoms(ϕ), ψU� θ ∈ Φ iff either:

1. θ ∈ Φ; or

2. ψ ∈ Φ and #χ(ψU� θ) ∈ Φ; or

3. ψ ∈ Φ and #(ψU� θ) ∈ Φ.

If 1 holds, then ψU� θ is trivially true; if 2 holds, the path skips the body of a chain
starting in the current position, where ψ holds; if 3 holds, then ψ is true in the current
position and the path continues in the next one. In the latter case, we must make sure
the path is followed only if the current position and the next one are in one of the
precedence relations in �. This can be achieved by adding the following constraints: if
only 3 holds in a state Φ and ψU�θ ∈ Φ, then for any a, b ∈P(AP) and Θ ∈ Atoms(ϕ),
with b = Θ ∩ AP, we have (Φ, a,Θ) ∈ δpush ∪ δshift only if a � b and � ∈ �. We need
not impose constraints on pop transitions because they do not consume input symbols,
and they preserve the same subset of AP contained in the starting state. Furthermore,
for any Φ ∈ Atoms(ϕ), if Φ ∈ F then ψU� θ < Φ, unless θ ∈ Φ.

Lemma 5.4. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, � ⊆ {l, .=,m}, andAψU�θ an OPA satisfy-
ing rules 1-5 of Section 5.2, and 1-3 of Section 5.4. For any word w on (P(AP),MP(AP)),
let position i ≤ |w| in w: we have

(w, i) |= ψU� θ

if and only if AψU�θ performs one accepting computation such that ψ U� θ ∈ Φi,
where Φi is the state of the automaton before reading position i.

Moreover, if (w, i) |= ψU� θ, then ψU� θ ∈ Φi in all accepting runs ofAψU�θ.

Proof. The validity of the expansion formulas used in rules 1 and 2 follows trivially
from the definitions of OP summary path and until operator. As for rule 3, we need to
prove that the additional constraint on push and shift transitions ensures the satisfaction
of the requirements on precedence relations between consecutive positions.

33

If 1 or 2 hold in a position, then the truth of ψU� θ is witnessed by at least one
path not passing through the next position, and no additional constraint is necessary.
Otherwise, if 3 holds in a state, the constraint on push and shift transitions blocks all
computations where ψU� θ would be witnessed by a path passing through consecutive
positions in a precedence relation not in �.

Given the correctness of model checking for the # and #χ (Lemma 5.2) operators,
it is possible to prove by induction on path length that all and only computations satis-
fying a weak version of ψU� θ are not blocked before the end of the word. Moreover,
the constraint on final states makes sure words where ψU� θ is not eventually satisfied
are not accepted.

The construction for ψ S� θ is analogous: #χ and # are replaced with �χ and �.

5.5. Yield-Precedence Hierarchical Until (U↑) Operator
This construction exploits the automaton’s stack to keep track of the requirements

of theU↑ operator in a way similar to #χ. If ψU↑ θ ∈ Cl(ϕ) we introduce the auxiliary
operatorsU↑s andU↑end. We add ψ, θ ∈ Cl(ϕ), and ψU↑s θ, ψU↑end θ ∈ Claux(ϕ).

Given any Φ,Θ,Ψ ∈ Atoms(ϕ) and a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift, then

1. ψU↑ θ ∈ Φ iff ψU↑s θ ∈ Θ;

let (Φ,Θ,Ψ) ∈ δpop or (Φ, a,Θ) ∈ δshift: then

2. ψU↑s θ < Φ and ψU↑end θ < Φ;

let (Φ,Θ,Ψ) ∈ δpop: then

3. ψU↑s θ ∈ Θ iff, either, θ ∈ Ψ or (ψ ∈ Ψ, θ < Ψ and ψU↑s θ ∈ Ψ);

4. if θ ∈ Ψ and ψU↑s θ ∈ Θ, then ψU↑end θ ∈ Ψ.

States containing ψU↑s θ or ψU↑end θ are excluded from the final set F.
Similarly to what happens for #χ, the auxiliary operator ψU↑s θ is put into the state

after the one in which ψ U↑ θ holds by rule 1. Then, the state containing ψ U↑s θ is
pushed on stack. Each time it is popped, we check if either θ holds in the next state, or
if ψ holds and the path continues, so ψU↑s θ must continue being propagated (rule 3).
In the former case, ψU↑end θ is put into the next state to mark the end of the hierarchical
path (rule 4). Let j be the right context of the maximal chain starting where ψU↑ θ is
supposed to hold. The purpose of rule 2 is to stop the computation if the hierarchical
path does not contain a position before j in which θ holds (recall that j is not part of
the hierarchical path, only right contexts of non-maximal chains are).

The correctness of this construction is shown in the following lemma.

Lemma 5.5. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, andAψU↑θ an OPA satisfying rules 1-4 of
Section 5.5. For any word w = #xyz# on (P(AP),MP(AP)), let position i = |x| + 1 in
w. We have

(w, i) |= ψU↑ θ
if and only if AψU↑θ performs one computation that brings it from configuration C0 =

〈yz,Φ, αγ〉 with ψU↑ θ ∈ Φ to a configuration 〈z,Φ′, α′γ〉 such that |α| = 1, |α′| ≤ 1,
and ψU↑s θ, ψU↑end θ < Φ′.

Moreover, if (w, i) |= ψU↑ θ, all accepting computations ofAψU↑θ pass through C0.

34

Proof. This correctness argument is largely similar to the one of the proof of Lemma 5.2.
For ψ U↑ θ to hold in i, w must have the structure shown in Figure 11. Indeed, if
(w, i) |= ψU↑ θ, then at least two chains must start in i.

If this is not the case, the word is rejected by the automaton. Suppose, by contra-
diction, w = # l x �x a �d d �z z m #, with no chain starting in a, and either a .

= d or
a m d. Let Φa be the state of the automaton before reading a, with ψU↑ θ ∈ Φa. By
rule 1, after reading a the automaton is in state Φd, with ψU↑s θ ∈ Φd. If a .

= d (resp.
a m d), then the next transition is a shift (resp. pop), but due to rule 2 it cannot occur.

We must now rule out the possibility that only one single chain starts in i, and
we do so by contradiction. The behavior of the automaton in this case is the same it
would be while reading the first part of a generic structure such as the one in Figure 11.
Suppose the automaton is in configuration 〈a . . . z,Φa, [f ,Φ f]γ〉 with α = [f ,Φ f], and
it guesses that ψU↑ θ holds in i, so ψU↑ θ ∈ Φa. If f .

= a, then the next configuration is
〈c0

0 . . . z,Φc0
0
, [a,Φ f]γ〉, and 〈c0

0 . . . z,Φc0
0
, [a,Φa][f ,Φ f]γ〉 if f l a. In both cases, ψU↑s

θ ∈ Φc0
0

because of rule 1. From now on, we will consider either σ = [a,Φ f]γ or σ =

[a,Φa][f ,Φ f]γ, depending on the precedence relation between f and a. Afterwards,
the automaton reads c0

0 and transitions to 〈v0
1 . . . z,Φv0

1
, [c0

0,Φc0
0
]σ〉, with ψU↑s θ ∈ Φc0

0
.

The automaton then goes on reading the rest of u0, leaving Φc0
0

on the stack.
Now, suppose n = 0, i.e. the only chain starting in i is the one ending with d (and

there are no bks). After reading v0
m0+1, the automaton is in configuration 〈dz,Φd, [c0

m0
,Φc0

0
]σ〉.

Since c0
m0

m d, the topmost symbol is popped, leading to 〈dz,Φ′d, σ〉. Due to rule 3, this
transition can only occur if ψ ∈ Φd or θ ∈ Φd. If this is the case, then either ψU↑s θ ∈ Φ′d
(rule 3) or ψU↑end θ ∈ Φ′d (rule 4). The next transition is a pop if a m d, or a shift if
a .

= d. In both cases, the computation stops due to rule 2. This is consistent with the
fact that if there are no non-maximal chains starting in a, then ψU↑ θ must be false. So
w has the structure of Figure 11, with n > 0.

[⇒] Let us go back to the configuration of the automaton after reading u0, i.e.
〈b1 . . . z,Φb1 , [c

0
m0
,Φc0

0
]σ〉. Since c0

m0
mb1, a pop transition occurs, leading to 〈b1 . . . z,Φ′b1

, σ〉.
Because ψ U↑s θ ∈ Φc0

0
, rule 3 applies. If θ ∈ Φb1 , i.e. θ holds in ib1 , then ψ U↑ θ

is satisfied in i by the hierarchical path made of position ib1 only, and ψ U↑end θ is
placed in Φ′b1

. Instead, if ψ ∈ Φb1 , then the hierarchical path must continue with other
bp positions, 1 < p ≤ n. So, ψ U↑s θ ∈ Φ′b1

. The transition reading b1 is a push:
〈u1 . . . z,Φu1 , [b1,Φ

′
b1

]σ〉. Then, while the automaton reads u1, it never pops the stack
symbol containing Φ′b1

, until b2 is reached. This process goes on until d is reached, in
the same way for each bp.

If ψU↑ θ holds in i, then by its semantics there exists a value k, 1 ≤ k ≤ n, such that
θ holds in ibk and ψ holds in ibh for each 1 ≤ h < k. Before reading ibk , the automaton is
in configuration Cbk = 〈bk . . . z,Φbk , [c

k−1
mk−1

,Φbk−1]σ〉, with ψU↑s θ ∈ Φbk−1 . Since θ ∈ Φbk ,
due to rules 3 and 4 it reaches 〈bk . . . z,Φ′bk

, σ〉, with ψU↑end θ ∈ Φ′bk
, and ψU↑s θ < Φ′bk

.
The computation goes on until 〈dz,Φd, [cn

mn
,Φcn

0
]σ〉 is reached, no matter whether ψ or

θ hold in bh, with h > k. Since ψ U↑s θ, ψ U↑end θ < Φcn
0
, the automaton can read d

normally, transitioning to 〈z,Φz, βγ〉, where ψU↑s θ, ψU↑end θ < Φz. It is easy to show
that either β = ε, β = [d,Φ f], β = [d,Φa], or β = [d,Φa][f ,Φ f]. In the first three cases,
α′ = β. In the last one, [d,Φa] will eventually be popped, fulfilling the thesis statement
with α′ = [f ,Φ f].

Suppose the OPA takes the wrong guess that ψU↑ θ does not hold in i, so ψU↑ θ <
Φa. Then, it arrives in configuration Cbk with ψU↑s θ < Φck

0
. Since, however, θ holds

35

in bk, θ ∈ Φbk , and by rule 3 the next pop move cannot occur, ending the computation.
Thus, for a run to be accepting, the right guess must be made when reaching C0.

[⇐] We already showed the word must have the form of Figure 11. Note that, for
the computation to continue after reading d, there must exist a value k, 1 ≤ k ≤ n, such
that θ ∈ Φbk and ψ ∈ Φbh for each 1 ≤ h < k, where Φbp is the state of the automaton
before reading bp. In fact, suppose there exists no such k. ψU↑s θ is introduced in the
state contained in the first stack symbol pushed after reading i by rule 1. We already
saw that, due to rule 3, the computation stops if a state containing ψ U↑s θ is popped
from stack and neither ψ nor θ hold in the previous state. Moreover, if ψ is present
in one of such states, ψ U↑s θ is propagated in the next stack symbol, and so are the
requirements of rule 3. This can only stop if θ is found in one of these positions. So,
in this case ψ ∈ Φbh for all 1 ≤ h ≤ n. By correctness of model checking for ψ and θ,
this implies θ holds in ibk and ψ holds in all ibh for 1 ≤ h ≤ n. So, ψU↑ θ holds in i.
Otherwise, the automaton eventually reaches configuration 〈dz,Φd, [cn

mn
,Φcn

0
]σ〉, with

ψU↑s θ ∈ Φcn
0
, and the computation is blocked by rule 2.

5.6. Yield-Precedence Hierarchical Since (S↓) Operator

If ψS↓θ ∈ Φ, with Φ ∈ Atoms(ϕ), then ψ, θ ∈ Cl(ϕ) and ψS↓s θ, ψS↓endθ,#χ(ψS↓s θ) ∈
Claux(ϕ). Also, ψS↓ θ ∈ Φ iff #χ(ψS↓s θ) ∈ Φ, introducing the auxiliary symbol ψS↓s θ.
For any Φ,Θ,Ψ ∈ Atoms(ϕ), let (Φ,Θ,Ψ) ∈ δpop:

1. ψS↓s θ ∈ Ψ iff, either, (θ ∈ Θ and ψS↓end θ ∈ Θ), or (ψ ∈ Θ, θ < Θ and ψS↓s θ ∈ Θ);

2. if θ ∈ Ψ, then ψ S↓end θ ∈ Ψ;

for any a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift:

3. then ψ S↓s θ < Θ and ψ S↓end θ < Θ.

The idea behind this definition is the following. Suppose ψS↓ θ holds in a state Φ ∈
Atoms(ϕ), associated to the terminal symbol a ∈ P(ϕ). Then the auxiliary operator
ψ S↓s θ is enforced through a #χ operator into the state of the OPA before it reads the
right context of the forward-maximal chain starting in a. This state is the result of
a pop move that pops the stack symbol pushed when reading the right context of a
non-maximal chain starting in a, i.e. a position that may be part of a yield-precedence
hierarchical path. Every time the stack symbol related to such a position is popped from
stack, rule 1 ensures that either θ holds in the next position in the path, which ends there
with ψ S↓end θ, or ψ holds in there, along with ψ S↓s θ, which ensures the prosecution of
the path. Rule 3 prevents the first position right after a from being considered part of
the path, preventing its prosecution with ψ S↓s θ and ψ S↓end θ. Note that the acceptance
conditions of #χ(ψ S↓s θ) already ensure the satisfaction of formula ψ S↓ θ before the
end of the string.

Lemma 5.6. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, andAψS↓θ an OPA satisfying rules 1-3 of
Section 5.6, and 1-5 of Section 5.2. For any word w = #xyz# on (P(AP),MP(AP)), let
position i = |x| + 1 in w: we have

(w, i) |= ψ S↓ θ

36

if and only if AψS↓θ performs one computation that brings it from configuration C0 =

〈yz,Φ, αγ〉 with ψS↓θ ∈ Φ to a configuration 〈z,Φ′, α′γ〉 such that ψS↓s θ, ψS↓end θ < Φ′,
|α| = 1, and |α′| ≤ 1.

Moreover, if (w, i) |= ψ S↓ θ, all accepting computations ofAψS↓θ go through C0.

Proof. [⇒] Suppose (w, i) |= ψ S↓ θ. Then, i is the left context of at least two nested
chains. Also, there exists 1 ≤ k ≤ n such that (w, ibk) |= θ and for all k < p ≤ n,
(w, ibp) |= ψ ∧ ¬θ. Before reading a, the OPA is in configuration C0 = 〈a . . . z,Φa, γ〉,
and it guesses that ψ S↓ θ holds in i, so ψ S↓ θ ∈ Φa and #χ(ψ S↓s θ) ∈ Φa. Then, it
reads the string normally until it is in configuration 〈bk . . . z,Φbk , σ〉, before reading bk

with a push move. By hypothesis, we have θ ∈ Φbk . Φbk is the state resulting from a
pop move, so by rule 2 we have ψ S↓end θ ∈ Φbk . Then, the push transition brings the
automaton to 〈vk

0 . . . z,Φvk
0
, [bk,Φbk]σ〉.

Let 〈bp . . . z,Φbp , [c
p−1
mp−1 ,Φbp−1]σ〉 be the configuration of the OPA when reaching

bp, for any k < p ≤ n. If p = k + 1, then θ ∈ Φbp−1 and ψ S↓end θ ∈ Φbp−1 . Otherwise, it
is possible to inductively show that ψ ∈ Φbp−1 , θ < Φbp−1 and ψ S↓s θ ∈ Φbp−1 By rule 1,
in both cases a pop move leads to 〈bp . . . z,Φ′bp

, σ〉 with ψ S↓s θ ∈ Φ′bp
. Note that, by

hypothesis, ψ ∈ Φ′bp
. Again, Φ′bp

is pushed, and the run proceeds until d is reached.
The configuration before reading d is 〈dz,Φd, [c,Φbn]σ〉, with either c = cn

mn
or c =

bn, ψ ∈ Φbn , θ < Φbn , and ψS↓s θ ∈ Φbn . By rule 1, a pop move leads to 〈dz,Φ′d, σ〉, with
ψ S↓s θ ∈ Φd. This is consistent with #χ(ψ S↓s θ) ∈ Φa, which verifies the initial guess.
By Lemma 5.2, if ψS↓s θ ∈ Φd all accepting computations have #χ(ψS↓s θ) ∈ Φa, so they
all make the right guess, and pass through C0. Moreover, there exists a computation
that after reading d reaches a state that contains no auxiliary symbols related to ψS↓ θ,
and only the topmost stack symbol has changed w.r.t. before i was read.

[⇐] For the other side of the implication, the correctness of #χ(ψS↓s θ), which must
hold in i, implies at least one chain starts in i. For the second chain, notice that in a
word such as #lx�x alc0

0v0
1 . . . c

0
m0

v0
m0+1md�z zm#, c0

0 is read by a push transition that
stores a state Φc0

0
on stack. Due to rule 3, ψ S↓s θ, ψ S↓end θ < Φc0

0
. Then, Φc0

0
is popped

when the automaton reaches d. However, since #χ(ψ S↓s θ) holds in a, by Lemma 5.2
we have ψ S↓s θ ∈ Φ′d (i.e. the state of the OPA before reading d). So, the last pop
move is of the form (Φd,Φc0

0
,Φ′d) with ψ S↓s θ, ψ S↓end θ < Φc0

0
and ψ S↓s θ ∈ Φ′d, which

contradicts rule 1. Thus, by contradiction, the structure of w is the one of Figure 11.
In this case, too, there exists a value 1 ≤ k ≤ n such that θ ∈ Φbk and for all

k < p ≤ n, ψ ∈ Φbp . This is justified by the fact that #χ(ψ S↓s θ) ∈ Φa, and by
correctness of the #χ operator we have ψU↑s θ ∈ Φd. Since d is the right context of a
chain, the transition leading to Φd is a pop. By rule 1, the state Φbn popped from stack
either contains θ and ψ S↓end θ, and k = n, or ψ and ψ S↓s θ, so k < n. In the latter case,
since the push move reading each bp, k < p ≤ n, is preceded by a pop, rule 1 applies.
So ψ S↓s θ is propagated backwards, with ψ holding in each bp, until bk is reached,
and the first case of rule 1 applies, with θ holding in bk. This must happen, or ψ S↓s θ
appears in Φc0

0
, the state of the OPA after reading position i, which contradicts rule 3.

The existence of k proves that ψU↑ θ holds in i.

5.7. Take-Precedence Hierarchical Until (U↓) Operator
Let Φ ∈ Atoms(ϕ), with ψU↓ θ ∈ Φ: then ψ, θ,�ψ,�θ,�χψ,�χθ,�χ> ∈ Cl(ϕ)

and ψ U↓s θ, ψ U↓end θ ∈ Claux(ϕ). For any Φ,Θ ∈ Atoms(ϕ) and a ∈ P(AP), let

37

input state stack rel. move rule

1 {b, p1}l {b, p2}l b m d m # q0 = {b, p1,#χ(p1 U↓ p2)} ⊥ # l b push –

2 {b, p2}l b m d m # q1 =

 b, p2,�p1,

#s
χ(p1 U↓ p2)

 [{b, p1}, q0]⊥ b l b push –

3 b m d m # q2 = {b,�p2} [{b, p2}, q1][{b, p1}, q0]⊥ b l b push –
4 d m # {d, p1 U↓ p2} [b, q2][{b, p2}, q1][{b, p1}, q0]⊥ b m d pop 4
5 d m # {d, p1 U↓ p2, p1 U↓s p2} [{b, p2}, q1][{b, p1}, q0]⊥ b m d pop 4

6 d m #

 d, p1 U↓ p2, p1 U↓s p2,

p1 U↓end p2,#end
χ (p1 U↓ p2)

 [{b, p1}, q0]⊥ b m d pop 3

7 d m # q3 =

d, p1 U↓ p2,

p1 U↓end p2

 ⊥ # l d push 2

8 # {#} [d, q3]⊥ d m # pop –
9 # {#} ⊥ # .

= # – –

Figure 14: A run of the automaton for formula #χ(p1 U↓ p2) accepting string “{b, p1}{b, p2}bd” w.r.t. an
OPM in which b l b and b m d. (Braces are omitted in singletons.)

(Φ, a,Θ) ∈ δpush ∪ δshift: then

1. ψU↓s θ < Θ and ψU↓end θ < Θ;

2. ψU↓ θ ∈ Φ iff ψU↓end θ ∈ Φ.

Moreover, for any Φ,Θ,Ψ ∈ Atoms(ϕ), let (Φ,Θ,Ψ) ∈ δpop:

3. ψU↓s θ ∈ Φ iff ψU↓end θ ∈ Ψ;

4. ψU↓s θ ∈ Ψ iff, either, �χθ ∨ (¬�χ >∧�θ) ∈ Θ, or (�χψ∨ (¬�χ >∧�ψ) ∈ Θ

and ψU↓s θ ∈ Φ).

Of course, if ψU↓ θ ∈ Φ then Φ < I.
Figure 14 shows an example accepting run for a formula containing this operator.

The structure of the word read by the OPA is an instance of that of Figure 15, with
multiple chains (starting in b-positions in the example) ending in the same position
j (d in the example). Let q3 ∈ Atoms(ϕ) be the state of the automaton just before
reading d. The consistency of p1 U↓ p2 ∈ q3 is checked during the pop transitions that
remove from the automaton’s stack the symbols related to all chains of which d is the
right context. The auxiliary operator U↓s is kept in the current state until the position
in which p1 U↓ p2 holds, when its requirements are finally checked. First, the OPA
guesses that p1 U↓ p2 holds in d, introducing it in step 4. This guess is verified by
rule 2 in step 7, with the auxiliary operator p1 U↓end p2. By rule 3 the pop transition
between steps 6-7 requires p1 U↓s p2 in the previous state. Constraint 4 checks that a
path satisfying p1 U↓ p2 actually exists. All previous consecutive pop transitions must
either enforce p2 in the left context of the chain, ibk (with label b), by having �p2 in
the popped stack symbol, and letting the path end (cf. step 4-5), or they enforce p1 in
ibk , and let the path continue by leaving p1 U↓s p2 in the previous state (cf. step 5-6).
In order to disallow paths that do not end with a position in which p2 holds, by rule 1,
p1 U↓s p2 cannot be the target state of any push or shift transition, and in particular of
the one reading the terminal symbol before d, which cannot be part of the path.

The correctness of these constraints is assessed by the following lemma.

38

Lemma 5.7. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, andAψU↓θ an OPA satisfying rules 1-4 of
Section 5.7. For any word w = #xyz# on (P(AP),MP(AP)), let position j = |xy| in w:
we have

(w, j) |= ψU↓ θ
if and only ifAψU↓θ performs one computation that brings it from configuration 〈yz,Φ, αγ〉
to a configuration 〈z,Φ′, α′γ〉 such that |α| = 1, |α′| ≥ 1, ψU↓s θ, ψU↓end θ < Φ′, and
ψU↓ θ ∈ Φ j, where Φ j is the state of the automaton before reading position j.

Moreover, if (w, j) |= ψU↓ θ, then ψU↓ θ ∈ Φ j in all accepting runs ofAψU↓θ

Proof. [⇒] Let d ∈ P(AP) be the label of position j. If ψU↓ θ holds in j, then it is
the right context of at least two chains, so w is of the form of Figure 15.

Also, there exists one value 1 ≤ k ≤ n such that (w, ibk) |= θ and for all k < p ≤ n,
(w, ibp) |= ψ ∧ ¬θ. The automaton’s computation on w proceeds normally until it
reaches bn, in configuration 〈bn . . . z,Φbn , σ〉, where σ = [cn

m0
,Φcn

0
]αγ, or σ = αγ,

α = [a,Φa] being the stack symbol introduced or updated when reading a. By hy-
pothesis, either θ ∈ Φbn , or θ < Φbn and ψ ∈ Φbn . In both cases, the computation
proceeds normally, until it reaches cn−1

0 (or bn−1, if cn−1
0 does not exist), with config-

uration 〈cn−1
0 . . . z,Φcn−1

0
, σ〉. By construction, �χθ ∨ (¬ �χ > ∧ �θ) ∈ Φcn−1

0
(resp.

�χψ ∨ (¬ �χ > ∧ �ψ) ∈ Φcn−1
0

). This holds by correctness of model checking for
the �χ and � operators. In particular, if vn−1

0 , ε, then �χθ (resp. �χψ) holds, and
¬ �χ > ∧ �θ (resp. ¬ �χ > ∧ �ψ) holds otherwise. The computation goes on in the
same way for each bp, with k ≤ p ≤ n. Finally, right after reading c0

m0
, the automaton is

in configuration 〈dz,Φd, [c0
m0
,Φc0

0
][b1,Φc1

0
] . . . [bn,Φcn

0
]αγ〉, with ψU↓s θ, ψU↑end θ < Φd,

�χθ ∨ (¬ �χ > ∧ �θ) ∈ Φck−1
0

and �χψ ∨ (¬ �χ > ∧ �ψ) ∈ Φcp−1
0

for k < p ≤ n. The

OPA guesses that ψU↓ θ holds in d, so ψU↓ θ ∈ Φd. Now, since c0
m0

and all b1 . . . bn

take precedence from d, a series of pop transitions occur. When popping [bk−1,Φck−1
0

],

ψU↓s θ is introduced in the resulting state by rule 4, and propagated in all transitions
until configuration 〈dz,Φ(n−1)

d , [bn,Φcn
0
]αγ〉, with ψ U↓s θ ∈ Φ

(n−1)
d . Then, by rule 3,

the last pop move leads to 〈dz,Φ(n)
d , αγ〉, with ψ U↓end θ ∈ Φ

(n)
d . It can then continue

by reading d with a push (leaving α untouched) or a shift move (updating α), which
verifies the previous guess, according to rule 2.

Note that, by rule 3, ψU↓end θ is propagated together with ψU↓s θ in pop moves that
identify a valid take-precedence hierarchical path. Thus, by rule 2, ψU↓ θ appears in
Φ j in all computations in which ψU↓ θ holds in j.

[⇐] Observe that d must be the right context of at least two chains. By rule 2, the
state Φd visited by the automaton right before reading d with a shift or a push move
contains ψU↓end θ. If, by contradiction, no chain ended in d, then the previous transition
would have been a shift or a push. By rule 1 no such transition exists. If only one chain
ended in d, the previous transition would have been a pop, starting from a state Φ′d with
ψU↓s θ ∈ Φ′d by rule 3. But this would be the state resulting from the shift/push move
reading the symbol before d (i.e. c0

m0
), which would violate rule 1. Hence, w must be

of the form of Figure 15, or any computation on it would stop before reading d.
For this side of the implication, the proof is analogous to the other one. It amounts

to noting that a computation resulting in a push/shift move reading d must contain a
series of pop transitions such as the one described above, by rules 2, 3 and 4. Rule 4
constrains �χψ ∨ (¬ �χ > ∧ �ψ) or �χθ ∨ (¬ �χ > ∧ �θ) to hold in the appropriate
positions, and by correctness of �χ and �, this results in the existence of a value

39

·

·

·

a ·

bn ·

bn−1 ·

...

·

b1 ·

d

#

x z

u0

un

un−1

u1

·

·

·

a ·

·

bn ·

bn−1 ·

...

·

b1 ·

d

#

x z

u0

un

un−1

u1

l x �x a l un �n bn l un−1 �n−1 bn−1 l . . . l u1 �1 b1 l u0 m d �z z m
0 i ibn ibn−1 ib1 j

l/
.
=

m m
m

Figure 15: The two possible ASTs of a generic OP word w = xyz (top) expanded on the rightmost non-
terminal, and its flat representation with chains (bottom). Wavy lines are placeholders for subtree frontiers.
We have either a .

= d (top left) or a l d (top right), and bk m d for 1 ≤ k ≤ n. For 1 ≤ k ≤ n, we either
have bk+1 [uk]bk , or uk is of the form vk

0ck
0vk

1ck
1 . . . c

k
mk

vk
mk+1, where ck

p
.
= ck

p+1 for 0 ≤ p < mk , ck
mk

.
= bk ,

and resp. a l cn
0 and bk+1 l ck

0. Moreover, for each 0 ≤ p < mk , either vk
p+1 = ε or ck

p [vk
p+1]ck

p+1 ; either

vk
mk+1 = ε or ck

mk [vk
mk+1]bk , and either vk

0 = ε or bk+1 [vk
0]ck

0 (resp. a[vn
0]cn

0). u0 has the same form, except

v0
m0

= ε and c0
m0

m d. The � symbols are placeholders for precedence relations, and they vary depending on
the surrounding terminal characters.

40

1 ≤ k ≤ n such that θ ∈ Φbk and for each k < p ≤ n, ψ ∈ Φbp . Such a k must exist, or
ψU↓s θ would be propagated backwards in the final sequence of pop moves according to
rule 4, down to the state resulting from the push/shift transition reading c0

m0
, the symbol

before d. But such a transition would violate rule 1.

5.8. Take-Precedence Hierarchical Since (S↑) Operator

Let Φ ∈ Atoms(ϕ) be a state in which ψ S↑ θ holds. Then we add ψ, θ ∈ Cl(ϕ),
ψ S↑s θ, ψ S↑end θ ∈ Claux(ϕ), and we impose the following constraints on the transition
function. For any Φ,Θ ∈ Atoms(ϕ), and a ∈P(AP), let (Φ, a,Θ) ∈ δpush ∪ δshift: then

1. ψ S↑ θ ∈ Θ, iff ψ S↑s θ ∈ Θ;

2. if ψ S↑ θ ∈ Φ, then ψ S↑end θ ∈ Φ and ψ S↑s θ < Φ.

For any Φ,Θ,Ψ ∈ Atoms(ϕ), let (Φ,Θ,Ψ) ∈ δpop: we have

3. if ψ S↑ θ ∈ Ψ then ψ S↑ θ ∈ Φ;

4. ψ S↑s θ ∈ Φ iff, either, (�χθ ∨ (¬ �χ > ∧ �θ) ∈ Θ and ψ S↑end θ < Ψ), or
(�χψ ∨ (¬�χ > ∧�ψ) ∈ Θ and ψ S↑s θ ∈ Ψ);

5. ψ S↑end θ < Φ.

Finally, if ψ S↑ θ ∈ Φ, then Φ < I.
The constraints for this operator work in a way similar to those of U↓. Here, the

auxiliary operator S↑end is used to mark the state of the automaton just before reading
the right context of the chains, in which ψS↑ θ holds, and discern the pop move related
to the end of the backward-maximal chain. Its left context cannot be part of the take-
precedence hierarchical path, and the presence of S↑end, with rule 4, prevents it from
ending there. Moreover, constraint 3 forces ψ S↑ θ to be in the current state since the
first pop transition, so that 1 always puts ψ S↑s θ into the state of the OPA before such
transition.

We prove the correctness of these constraints in the following lemma.

Lemma 5.8. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, andAψS↑θ an OPA satisfying rules 1-5 of
Section 5.8. For any word w = #xyz# on (P(AP),MP(AP)), let position j = |xy| in w:
we have

(w, j) |= ψ S↑ θ
if and only ifAψS↑θ performs one computation that brings it from configuration 〈yz,Φ, αγ〉
to a configuration 〈z,Φ′, α′γ〉 such that |α| = 1, |α′| ≥ 1, ψ S↑s θ, ψ S↑end θ < Φ′, and
ψ S↑ θ ∈ Φ j, where Φ j is the state of the automaton before reading position j.

Moreover, if (w, j) |= ψ S↑ θ, then ψ S↑ θ ∈ Φ j in all accepting runs ofAψS↑θ.

Proof. [⇒] By the semantics of ψ S↑ θ, j is the right context of at least two chains, so
w has the form of Figure 15. If ψ S↑ θ holds in j, then there exists a value 1 ≤ k ≤ n
such that (w, ibk) |= θ and for each 1 ≤ p < k, (w, ibp) |= ψ. The behavior of the
automaton on such a word is essentially analogous to the one described in the proof
of Lemma 5.7. Therefore, the OPA reads the first part of w, reaching the configu-
ration 〈dz,Φd, [c0

m0
,Φc0

0
][b1,Φc1

0
] . . . [bn,Φcn

0
]αγ〉, where αγ is the stack content right

after reading a, �χθ ∨ (¬ �χ > ∧ �θ) ∈ Φck−1
0

because θ ∈ Φbk , and for all 1 ≤ p < k,

41

�χψ∨(¬�χ>∧�ψ) ∈ Φcp−1
0

, because ψ ∈ Φbp . The OPA guesses that ψS↑ θ holds in j,

so ψS↑θ ∈ Φd, and by rule 1, ψS↑s θ ∈ Φd. Then, a series of pop moves occur. By rule 4,
all transitions occurring before the one popping [bk−1,Φck−1

0
] propagate ψ S↑s θ into the

next state. Then, [bk−1,Φck−1
0

] is popped, leading to 〈dz,Φ(k)
d , [bk,Φck

0
] . . . [bn,Φcn

0
]αγ〉.

This move may occur, verifying the guess, due to rule 4, because ψ S↑end θ < Φ
(k)
d . The

subsequent move is, in fact, the pop of [bk,Φck
0
], so rule 5 applies. Thus, the run may

proceed with a push or a shift move reading d, satisfying rule 2. If d is read with a
push, then α is left untouched, and it is only updated if d is read with a shift move.

Note that the propagation of ψ S↑s θ in pop transitions occurs whenever there is a
valid path satisfying ψ S↑ θ. So, by rule 1 also appears, and is kept in the current state
until d is read, so ψ S↑ θ ∈ Φ j.

[⇐] For the other side of the implication, if j is the right context of no chain, the
push/shift move reading position j is preceded by another push/shift move. By rule 1,
the latter introduces ψ S↑s θ in the next state Φ j, which prevents the former move from
taking place, by rule 2. If j is the right context of only one chain, then ψ S↑s θ is
introduced by rule 1 into the starting state of the pop move related to the end of that
chain. Due to rule 4, either ψ S↑s θ ∈ Φ j or ψ S↑end θ < Φ j, preventing the transition that
would read position j, by rule 2. So, w must be of the form of Figure 15.

Now, we must prove that any successful computation must be of the form we de-
scribed earlier. The fact that ψS↑s θ is contained in state Φd is enforced by rule 1. Note
that, due to rule 3, ψ S↑ θ must already be present in Φd, and it cannot be introduced
in one of the subsequent pop transitions. Hence, for the push/shift move reading d not
to violate rule 2, ψ S↑s θ must stop being propagated by rule 4. This can only happen if
there exists 1 ≤ k ≤ n such that �χψ ∨ (¬�χ > ∧�ψ) holds in all popped states until
Φck−1

0
, which contains �χθ ∨ (¬ �χ > ∧ �θ). Then, we have θ ∈ Φbk and ψ ∈ Φbp , for

all 1 ≤ p < k, where Φbh is the state of the automaton before reading bh, for any h.

5.9. Global correctness
The correctness of this model checking procedure is carried out by induction on the

syntactic structure of the formula. For each operator, we prove that if the automaton
built for its operands is correct, then the one built for the whole formula is also correct.

Theorem 5.9. Given a finite set of atomic propositions AP, an OP alphabet (P(AP),
MP(AP)), a word w on it, and an OPTL formula ϕ, the automaton built according to
the procedure in this section is such that we have

(w, 1) |= ϕ

if and only if it performs at least one accepting computation on w. Moreover, such an
automaton is of size 2O(|ϕ|).

Proof. In Lemmas 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 we proved that any OPTL op-
erator holds in a word position iff the corresponding automaton performs at least one
computation that, after reading a (possibly improper) prefix of the word, brings it in
a state containing no auxiliary operators. Moreover, each operator appears in an OPA
state only if it holds in the corresponding word position, or the computation is not
accepting. We take the correctness of LTL operators for granted.

[⇒] If ϕ holds in position 1, then all temporal requirements of ϕ and its subformulas
are satisfied before the end of w. Therefore, by the lemmas listed above, there exists
a computation of the OPA built for ϕ and a prefix x of w such that, after reading x,

42

a b c
a l l l
b m m m
c l l m

l a l c l b m b m c l b m b m c l b m b m c · · ·
0 1 2 3 4 5 6 7 8 9 10 11

Figure 16: OPM (top) and the structure of ω-word a(cbb)ω (bottom).

the current state of the automaton does not contain any auxiliary symbol or temporal
operator related to a subformula of ϕ. Then, by the fact that all consistent states and
transitions are part of the automaton, there exists at least one computation that reads
the rest of w (if any) ending in a state containing no future temporal operators, which
is final. Such a computation is accepting.

[⇐] Suppose the automaton built for ϕ accepts the word w. Then there exists an
accepting computation starting from the initial state containing ϕ and ending in a final
state. By construction, if a state is final it contains no auxiliary or future temporal
operators. Therefore, it follows by the lemmas listed above that ϕ holds in position 1.

Regarding the complexity claim, the size of the set Cl(ϕ) is linear w.r.t the length of
formula ϕ, and its increase due to the addition of auxiliary operators in the subsequent
sections is also linear. The set Atoms(ϕ), which contains the states of the automaton,
is a subset of P(Cl(ϕ)); thus, its size is at most exponential in Cl(ϕ) and in |ϕ|.

Given a formula ϕ it is possible to check its satisfiability by building OPA Aϕ of
size 2O(|ϕ|), and then checking its emptiness. This can be done in time polynomial in
the size of Aϕ by transforming Aϕ into an equivalent context-free grammar [27], and
testing emptiness of the generated language [38]. Moreover, EXPTIME-hardness can
be deduced from the same result as for NWTL [12] and Theorem 4.5. Thus, we claim

Corollary 5.10. The satisfiability problem for OPTL on finite words is EXPTIME-
complete.

6. OPTL on Infinite Words and its Model Checking

In the previous sections, we studied OPTL with semantics based on finite words.
In order to extend its semantics to the infinite case, it suffices to consider an infinite set
of positions U = N. The formal definitions of all OPTL operators remain the same as
described in Section 3.2.

As for the intuitive meaning, the only change concerns “forward-maximal chains”
(−→χ). We formally defined −→χ (i, j) to hold if χ(i, j) and i .= j or im j. In finite OP words,
one of such chains is also the outermost one starting in a position i. In ω-words, the
outermost chain may be open (cf. Section 2.1). In this case, according to the formal
semantics of Section 3.2, −→χ (i, j) does not hold for any j in the context of an open chain.
E.g., in the example of Figure 16, there is no j such that −→χ (1, j) holds, and #χ> is false
in 1.

43

The relations with nested words stated in Section 4 extend naturally when shifting
to ω-words. Instead, the model checking procedure for the finite words case becomes
slightly more complex for ω-words, due to the need to adapt it to Büchi acceptance
conditions.

Model checking for an OPTL formula ϕ on infinite words can be performed by
building a generalized ωOPBA (cf. Section 2.1) Aω

ϕ = 〈P(AP),MP(AP),Atoms(ϕ) ×
P(Clstack(ϕ)), I,F, δ〉, which differs from the finite-word counterpart only for the state
set and the acceptance condition. As in [12], the generalized Büchi acceptance condi-
tion is a slight variation on the one shown in Section 2.1: F is the set of sets of Büchi
final states, and an ω-word is accepted iff at least one state from each one of the sets
contained in F is visited infinitely often during the computation. In finite words, the
stack is empty at the end of every accepting computation, which implies all temporal
constraints tracked by stack symbols must have been satisfied. In ωOPBAs, the stack
may never be empty, and symbols containing auxiliary operators may remain buried
forever, never enforcing the satisfaction of the formulas they refer to. This problem
can be solved by considering states of the form Φ = (Φc,Φp), Φc ∈ Atoms(ϕ) and
Φp ⊆ Clstack(ϕ). Φc is used exactly in the same way as states in the finite counter-
part. Instead, Φp, called the pending part of Φ, contains only auxiliary operators in
Clstack(ϕ) ⊆ Claux(ϕ) that are in a stack symbol currently on the stack. Thus, pending
temporal requirements are moved from the stack into the OPA state, and they can be
considered in the Büchi acceptance condition.

Suppose we want to model check #χψ. The auxiliary symbol #s
χψ must be in-

serted in the pending part of the current state whenever a stack symbol containing it is
pushed, and kept in the automaton’s state until that symbol is popped, and its temporal
requirement satisfied. Then, it is possible to define an acceptance set F ∈ F, for each
use of this temporal operator, as the set of states not containing #s

χψ in their atom, nor
in their pending part.

This construction is formalized as follows. Let ψ ∈ Clstack(ϕ). We add a few
constraints on the transition relations. For any Φ,Θ,Ψ ∈ Atoms(ϕ) and a ∈ P(AP),
let (Φ, a,Θ) ∈ δpush:

1. if ψ ∈ Φc, then ψ ∈ Θp;

let (Φ, a,Θ) ∈ δpush or (Φ, a,Θ) ∈ δshift:

2. if ψ ∈ Φp, then ψ ∈ Θp;

let (Φ,Θ,Ψ) ∈ δpop:

3. if ψ ∈ Φp and ψ ∈ Θp, then ψ ∈ Ψp.

Lemma 6.1. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ ∈ Clstack(ϕ), and A an OPA satisfying rules 1-3 above. For any ω-word
w = #xy on (P(AP),MP(AP)), let 〈y,Φ, γ〉 beA’s configuration after reading x.

If there exists a stack symbol [a,Θ] ∈ γ such that ψ ∈ Θc, then ψ ∈ Φp.

Proof. Suppose there exists a stack symbol [a,Θ] ∈ γ such that ψ ∈ Θc, and ψ < Θp.
This symbol was put on the stack by a previous push move. Let 〈azy,Θ, δ〉, where az is
a suffix of x, be the configuration of the OPA just before such move.

By rule 1, this push move brings the OPA to a configuration 〈zy,Φz, [a,Θ]δ〉, with
ψ ∈ Φ

p
z . By rule 2, ψ is propagated in the pending part of A’s state by all subsequent

push and shift transitions. Consequently, all stack symbols pushed on top of [a,Θ]

44

input state stack rel. move rule
1 c l b m b m c l b · · · q0 = ({c,#χc}, ∅) ⊥ # l c push F1, F2
2 b m b m c l b · · · q1 = ({b,#s

χc}, ∅) [c, q0]⊥ c l b push ω1
3 b m c l b · · · ({b}, {#s

χc}) [b, q1][c, q0]⊥ b m b pop F5
4 b m c l b · · · q1 [c, q0]⊥ c l b push ω1
5 c l b · · · ({c,#χc}, {#s

χc}) [b, q1][c, q0]⊥ b m c pop F5
6 c l b · · · ({c,#χc,#end

χ c}, ∅) [c, q0]⊥ c m c pop F3, F4
7 c l b · · · q0 ⊥ # l c push F1, F2

input state stack rel. move rule
1 a l c l b m b m c l b · · · q2 = ({a,#χc}, ∅) ⊥ # l a push F1,F2
2 c l b m b m c l b · · · q3 = ({c,#χc,#s

χc}, ∅) [a, q2]⊥ a l c push F1,F2
3 b m b m c l b · · · q4 = ({b,#s

χc}, {#s
χc}) [c, q3][a, q2]⊥ c l b push ω1

4 b m c l b · · · ({b}, {#s
χc}) [b, q4][c, q3][a, q2]⊥ b m b pop F5,ω3

5 b m c l b · · · q4 [c, q3][a, q2]⊥ c l b push ω1
6 c l b · · · q5 = ({c,#χc}, {#s

χc}) [b, q4][c, q3][a, q2]⊥ b m c pop F5,ω3
7 c l b · · · ({c,#χc,#end

χ c}, {#s
χc}) [c, q3][a, q2]⊥ c m c pop F3,F4,F5

8 c l b · · · q3 [a, q2]⊥ a l c push F1,F2

Figure 17: An accepting run of the ωOPBA for formula #χc on the ω-word (cbb)ω (top) w.r.t. the OPM of
Figure 16, and a rejecting one on a(cbb)ω (bottom). Rules preceded by ‘F’ are from Section 5.2, those with
‘ω’ from Section 6.

contain ψ in their pending part. Thus, according to rule 3, ψ is also propagated every
time one of such symbols is popped. When [a,Θ] is popped, rule 3 does not apply, so
ψ may be dropped from the next state.

Conversely, suppose ψ ∈ Θp. In this case, the above reasoning also applies. The
only difference is that rule 3 does not apply on the transition popping [a,Θ], so ψ
continues being propagated afterwards.

Thus, whenever [a,Θ] is present in the stack, ψ is in the pending part of the current
state. It is dropped only once [a,Θ] is popped.

All future operators except S↓ only need additions to the construction for the finite
case (Section 5), which we detail in the following sections. Since the construction
for S↓ on finite words relies on the #χ operator, it does not need to be modified. All
constraints on the transition relation defined in Section 5 must be considered valid for
the atom of ωOPBA states they refer to. We omit the construction for LTL operators,
because we resort to the classical one. Past operators do not need any addition to the
rules for the finite case, because infinite words pose no further issues in ensuring their
eventual satisfaction.

After separately proving the correctness of the construction for each operator, we
inductively prove the soundness of the whole construction in Theorem 6.5, as we did
for the finite case.

6.1. Matching Next (#χ) Operator

In order to adapt the OPA construction of Section 5.2, it suffices to add #s
χψ ∈

Clstack(ϕ) if #χψ ∈ Cl(ϕ), so that its presence in the stack is tracked by the pending part
of the OPA’s states. Moreover, we define F#χψ ∈ F, the Büchi acceptance set for #χψ,
so that for any Φ ∈ (Atoms(ϕ)×P(Clstack(ϕ))), Φ ∈ F#χψ iff #s

χψ < Φc and #s
χψ < Φp.

We show how the construction works with the help of the example of Figure 17.
The top part shows an accepting run of the ωOPBA for #χc. It proceeds in the same
way as shown in Section 5.2, except the word is infinite, and #χc is satisfied in every c.
The ωOPBA guesses this fact by visiting a state containing #χc before reading each c,
starting from the initial state q0 in step 1, then in step 5, and so on. #s

χc is inserted into

45

the atom of state q1 when #χc appears due to rule F1 of the finite-word construction
(step 1-2). When q1 is pushed on the stack, #s

χc enters the pending part of the next state
(step 2-3), due to rule ω1 of Section 6. When q1 is popped, rule ω3 does not apply, and
the ωOPBA guesses not to propagate #s

χc in the pending part of the next state. Notice
how #s

χc remains in one of the two parts of the current state until step 6, in which #χc
of step 1 is satisfied. The ωOPBA guesses its satisfaction, removing #s

χc from the state
of step 7, and comes back to the same configuration of step 1. Since this subword is
repeated indefinitely, state q0, which is final, is also visited infinitely often, causing the
acceptance of the word.

The bottom part of Figure 17 shows a rejecting run. It starts in a state containing
#χc as all initial states of this ωOPB do, but a is the left context of an open chain, so
#χc is not satisfied. #s

χc starts being propagated in step 2, and it remains in the current
state forever. Notice that, every time a pop occurs, rule F5 or ω3 applies, and #s

χc is
never dropped. So, no final state is visited infinitely often.

We show the correctness of this construction below.

Lemma 6.2. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ an OPTL formula on it, and A#χψ an ωOPBA satisfying rules 1-5 of Sec-
tion 5.2, and 1-3 of Section 6. For any ω-word w = #xyz on (P(AP),MP(AP)), let
position i = |x| + 1 in w: we have

(w, i) |= #χψ

if and only if the automaton built for #χψ performs at least one computation such that
either:

a) the automaton goes through a configuration 〈yz,Φ, ρ〉, with #χψ ∈ Φc and
#s
χψ < Φp, and the computation is accepting;

or

b) the automaton passes from configuration 〈yz,Φ0, αγ〉 with #χψ ∈ Φc
0 and #s

χψ ∈
Φ

p
0 to 〈z,Φn, α

′γ〉 such that #s
χψ < Φc

n, |α| = 1, |α′| ≤ 1, and for all 1 ≤ k ≤ n,
#s
χψ ∈ Φc

k or #s
χψ ∈ Φ

p
k .

Proof. [⇒] If (w, i) |= #χψ, by Lemma 5.2 the OPA performs at least one computation
that brings it from configuration C0 = 〈yz,Φ, αγ〉 with #χψ ∈ Φc to C f = 〈z,Φ′, α′γ〉,
such that #s

χψ,#
end
χ ψ < Φ′c, |α| = 1 and |α′| ≤ 1.

Suppose #s
χψ < Φp (case a)). The proof of Lemma 5.2 shows that, when |α′| = 1,

the state contained in it is the same one contained in α. If #s
χψ < Φp, then #s

χψ is not
present in any state in αγ, nor α′γ. If any state containing #s

χψ in its atom is pushed
between C0 and C f , it is popped before reaching C f . Therefore, by Lemma 6.1 we
can conclude that there exists a computation in which #s

χψ < Φ′p and #s
χψ < Φ′c, so

Φ′ ∈ F#χψ.
Suppose #s

χψ ∈ Φp (case b)). Then, the thesis trivially follows from Lemmas 5.2
and 6.1.

[⇐] Suppose case a) holds. If the computation is accepting, it means a state ΦF ∈ F
such that #s

χψ < Φc
F and #s

χψ < Φ
p
F is visited infinitely often. Moreover, by rule 1 of

Section 5.2, if #χψ ∈ Φc then #s
χψ is present in the atom of a subsequent state, which

is then pushed onto the stack. It is easy to see from the proof of Lemma 5.2 that #s
χψ

remains either in the atom of the current state or in the stack until the OPA reaches the
right context of the forward-maximal chain starting in i. Thus, for all states in between,

46

either #s
χψ is present in their atom or, due to Lemma 6.1, in their pending part. If ΦF

is reached, it means a configuration such as C f occurs, which implies (w, i) |= #χψ, by
Lemma 5.2.

Case b) directly implies the right part of the double implication of Lemma 5.2, so
the left part (w, i) |= #χψ follows.

6.2. Summary Until (U�) Operator

For this operator we keep the rules for the finite case, except for the acceptance
conditions, which are defined as follows. For any formula ψ U� θ and set � ⊆ {l,
.
=,m}, we introduce the Büchi acceptance set FψU�θ ∈ F, such that Φ ∈ FψU�θ iff
#s
χ(ψU� θ) < Φc, #s

χ(ψU� θ) < Φp and either

1. ψU� θ < Φ or

2. θ ∈ Φ.

Note that the acceptance conditions for formula #χ(ψ U� θ) are involved, and they
prevent words with open chains that delay forever the satisfaction of ψ U� θ from
being mistakenly accepted.

Lemma 6.3. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, � ⊆ {l, .=,m}, and AψU�θ an ωOPBA
satisfying rules 1-5 of Section 5.2, 1-3 of Section 6, and those of Section 6.2. For any
ω-word w on (P(AP),MP(AP)) and position i in w, we have

(w, i) |= ψU� θ

if and only ifAψU�θ performs at least one accepting computation such that ψU� θ ∈
Φi, where Φi is the state of the automaton before reading position i.

Proof. The correctness of the finite-case constraints for a weak version of ψ U� θ
follows from Lemma 5.4. We need to prove that of the Büchi acceptance conditions.

[⇒] If ψU� θ does not hold infinitely often, then condition 1 trivially holds. Other-
wise, for each position i in which ψU� θ holds, there exists an OP summary path from
i to a position j in which θ holds. The state Φ j of the automaton right before reading j
contains θ. If #s

χ(ψU� θ) < Φc
j and #s

χ(ψU� θ) < Φ
p
j , condition 2 applies. Otherwise,

#s
χ(ψU� θ) may be in Φc

j or Φ
p
j because either #χ(ψU� θ) is a requirement of ψ or θ,

or it just happens to hold in this computation. In the latter case, by construction there
exists also a computation in which #χ(ψU� θ) is not present, and #s

χ(ψU� θ) < Φc
j

and #s
χ(ψU� θ) < Φ

p
j . In the former, if ψU� θ holds in i, then the instance of ψU� θ

required by #χ(ψU� θ) also holds, and the same reasoning can be applied to the po-
sition j′′ in which the OP summary path satisfying it ends. Since ψ and θ are finite, we
eventually reach a state satisfying condition 2.

[⇐] If a state satisfying condition 1 is repeated infinitely often, then the fact that
all instances of ψU� θ are satisfied follows from the correctness of its weak version
(Lemma 5.4). Suppose a state Φ satisfying 2 is repeated infinitely often. If #s

χ(ψU�

θ) < Φc
j and #s

χ(ψU� θ) < Φ
p
j , then no instance of #χ(ψU� θ) is pending. Therefore,

any path of a previous instance of ψU� θ must pass through the position read by the
automaton after being in state Φ. Since θ ∈ Φ, θ holds in this position, and ψU� θ is
satisfied.

47

6.3. Yield-Precedence Hierarchical Until (U↑) Operator
The acceptance conditions for this operator are very similar to those for the #χ

operator, since they both rely on stack symbols to propagate their requirements. To
adapt the construction of Section 5.5 to ω-words, we add ψU↑s θ ∈ Clstack(ϕ) if ψU↑ θ ∈
Cl(ϕ). We define FψU↑θ ∈ F, the Büchi acceptance set for ψ U↑ θ, so that for any
Φ ∈ Atoms(ϕ) ×P(Clstack(ϕ)), Φ ∈ FψU↑θ iff ψU↑s θ < Φc and ψU↑s θ < Φp. Thus,
the auxiliary operator ψU↑s θ is used to keep track of an unsatisfied instance of ψU↑ θ,
in the same way #s

χψ is used for #χψ. We prove the correctness of this construction
below.

Lemma 6.4. Let AP be a finite set of atomic propositions, (P(AP),MP(AP)) an OP
alphabet, ψ and θ two OPTL formulae on it, andAψU↑θ an ωOPBA satisfying rules 1-4
of Section 5.5, and 1-3 of Section 6. For any ω-word w = #xyz on (P(AP),MP(AP)),
let position i = |x| + 1 in w: we have

(w, i) |= ψU↑ θ
if and only ifAψU↑θ performs at least one computation such that either:

a) the automaton goes through a configuration 〈yz,Φ, ρ〉 with ψ U↑ θ ∈ Φc and
ψU↑s θ < Φp, and the computation is accepting;

b) the automaton passes from configuration 〈yz,Φ0, αγ〉 with ψ U↑ θ ∈ Φc
0 and

ψU↑s θ ∈ Φ
p
0 to 〈z,Φn, α

′γ〉 such that ψU↑s θ < Φc
n, |α| = 1, |α′| ≤ 1, and for all

1 ≤ k ≤ n, ψU↑s θ ∈ Φc
k or ψU↑s θ ∈ Φ

p
k .

Proof. [⇒] If (w, i) |= ψ U↑ θ, by Lemma 5.5, AψU↑θ reaches configuration C0 =

〈yz,Φ, αγ〉 with ψU↑ θ ∈ Φc to a configuration 〈z,Φ′, α′γ〉 such that |α| = 1, |α′| ≤ 1,
and ψU↑s θ, ψU↑end θ < Φ′c.

If ψU↑s θ < Φp (case a)), from the proof of Lemma 5.5 we can conclude that all
states pushed on the stack after C0 are popped before C f , as we noted in the proof of
Lemma 6.2. Thus, ψU↑s θ < Φ′c and ψU↑s θ < Φ′p, so Φ′ ∈ FψU↑θ.

If ψU↑s θ ∈ Φp (case b)), the thesis follows from Lemmas 5.5 and Lemma 6.1.
[⇐] Suppose case a) holds. From the proof of Lemma 5.5, we can see that if ψU↑ θ

is present in the atom of a state, then ψU↑s θ is inserted into the next state, and kept either
in the atom of the current state, or in that of a state on the stack, until configuration C f

is reached. If the computation is accepting, then a state ΦF such that ψU↑s θ < Φc
F and

ψU↑s θ < Φ
p
F is visited. By Lemma 6.1, this may only happen if ψU↑s θ is not present

in the atom of the current state, nor in the stack. We can conclude that a configuration
such as C f is reached, and (w, i) |= ψU↑ θ.

Case b) implies the right part of the double implication of 5.5, so (w, i) |= ψU↑ θ
follows.

6.4. Correctness
We now prove the correctness of the ωOPBA inductively on the syntactic structure

of the formula.

Theorem 6.5. Given a finite set of atomic propositions AP, an OP alphabet (P(AP),
MP(AP)), an ω-word w on it, and an OPTL formula ϕ, the automaton built according
to the procedure in this section is such that we have

(w, 1) |= ϕ

48

if and only if it performs at least one accepting computation on w. Moreover, the size
of such an automaton is at most 2O(|ϕ|).

Proof. The proof is carried out similarly to Theorem 5.9, by induction on the syntactic
structure of ϕ. For the future operators, correctness is proved in Lemmas 6.2, 6.3, 6.4.
For #χ and U↑, we prove that they hold iff either a computation of the automaton is
accepting, or if it proceeds to a configuration in which the stack has the same length
as before they hold, i.e. no auxiliary symbols related to the last instance of them are
contained in the stack, but those of other instances are. In the latter case, correctness of
the whole model checking process is due to the correctness of the outermost instance
of such operators. For S↓, we rely on Lemma 5.6 and on the correctness of the Büchi
acceptance conditions for #χ. For the past operators, Lemmas 5.3, 5.7 and 5.8 hold.

Using Atoms(ϕ) ×P(Clstack(ϕ)) as the set of states only causes a polynomial in-
crease of the size of the ωOPBA, which remains exponential in |ϕ|.

From an argument similar to the one we made for the finite case follows

Corollary 6.6. The satisfiability problem for OPTL onω-words is EXPTIME-complete.

7. Conclusions

We presented a new temporal logic based on the OPL family. We proved that it is
more expressive than NWTL, which is based on the less powerful class VPL. OPTL
can convey more properties than other similar temporal logics, with the possibility of
model checking with an automaton of size not greater than competing formalisms. A
further natural step in the theoretical characterization of OPTL is a more complete
exploration of its power, in particular concerning First-Order completeness, as it has
been done for various temporal logics, including NWTL [12].

A strictly related open issue is the relative expressive power of MSO logic vs. the
FO one for OPLs. Such a relation has been thoroughly investigated in the case of
regular languages in a rich literature, including [3]: it has been shown that regular lan-
guages expressible in FO logic coincide with the classes of non-counting or aperiodic
languages, of the star-free ones, and many more. Thomas and others [39, 40, 41],
however, have shown that such characterizations do not extend to the natural structural
generalization of regular languages, i.e., tree languages. We conjecture, instead, that
similar equivalences could hold for OPLs by referring to their strings rather than to
their trees. Such a possible result, joined with a FO-complete temporal logic would
allow to extend most classical results on logic characterization and model checking of
regular languages to the much wider class of OPLs.

On the side of practical application, we are planning the development and imple-
mentation of suitable model checking algorithms based on the theoretical procedures
presented in this paper. We also believe that most of the logics used to define prop-
erties of subclasses of context-free languages, including NWTL and OPTL, lack user-
friendliness and require excessive mathematical skill to translate an informal require-
ment into a well-defined formula; thus, we envisage a higher level interface for OPTL
more palatable for users familiar with semi-formal notations like UML.

Acknowledgements

We would like to express our gratitude to the anonymous reviewers for their careful
reading of the article, as their observations and advice allowed us to greatly improve
its readability.

49

References

[1] M. Chiari, D. Mandrioli, M. Pradella, Temporal logic and model checking for
operator precedence languages, in: GandALF 2018, Vol. 277 of EPTCS, Open
Publishing Association, 2018, pp. 161–175. doi:10.4204/EPTCS.277.12.

[2] J. R. Büchi, Weak Second-Order Arithmetic and Finite Automata, Mathematical
Logic Quarterly 6 (1-6) (1960) 66–92. doi:10.1002/malq.19600060105.

[3] R. McNaughton, S. Papert, Counter-free Automata, MIT Press, Cambridge, USA,
1971.

[4] M. Frick, M. Grohe, The complexity of first-order and monadic second-order
logic revisited, Ann. Pure Appl. Logic 130 (1-3) (2004) 3–31. doi:10.1016/j.
apal.2004.01.007.

[5] E. A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), Elsevier, 1990, pp.
995–1072. doi:10.1016/B978-0-444-88074-1.50021-4.

[6] R. Alur, D. L. Dill, A Theory of Timed Automata, Theor. Comput. Sci. 126 (2)
(1994) 183–235. doi:10.1016/0304-3975(94)90010-8.

[7] R. McNaughton, Parenthesis Grammars, JACM 14 (3) (1967) 490–500. doi:

10.1145/321406.321411.

[8] J. Thatcher, Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory, Journ. of Comp. and Syst.Sc. 1 (1967)
317–322. doi:10.1016/S0022-0000(67)80022-9.

[9] B. von Braunmühl, R. Verbeek, Input-driven languages are recognized in log n
space, in: Proc. of the Symp. on Fundamentals of Computation Theory, LNCS
158, Springer, 1983, pp. 40–51. doi:10.1007/3-540-12689-9_92.

[10] R. Alur, P. Madhusudan, Adding nesting structure to words, JACM 56 (3) (2009).
doi:10.1145/1516512.1516518.

[11] R. Alur, K. Etessami, P. Madhusudan, A temporal logic of nested calls and re-
turns, in: TACAS 2004, Vol. 2988 of LNCS, Springer, 2004, pp. 467–481.

[12] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, L. Libkin, First-order
and temporal logics for nested words, Logical Methods in Computer Science 4 (4)
(2008). doi:10.2168/LMCS-4(4:11)2008.

[13] R. Alur, S. Chaudhuri, P. Madhusudan, Software model checking using languages
of nested trees, ACM Trans. Program. Lang. Syst. 33 (5) (2011) 15:1–15:45. doi:
10.1145/2039346.2039347.

[14] O. Burkart, B. Steffen, Model checking for context-free processes, in: CON-
CUR ’92, Vol. 630 of LNCS, Springer, 1992, pp. 123–137. doi:10.1007/

BFb0084787.

[15] I. Walukiewicz, Pushdown processes: Games and model-checking, Information
and Computation 164 (2) (2001) 234–263. doi:10.1006/inco.2000.2894.

50

https://doi.org/10.4204/EPTCS.277.12
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/321406.321411
https://doi.org/10.1145/321406.321411
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1007/3-540-12689-9_92
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/2039346.2039347
https://doi.org/10.1145/2039346.2039347
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1006/inco.2000.2894

[16] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown au-
tomata: Application to model-checking, in: CONCUR 1997, Vol. 1243 of LNCS,
Springer, 1997, pp. 135–150. doi:10.1007/3-540-63141-0_10.

[17] J. Esparza, D. Hansel, P. Rossmanith, S. Schwoon, Efficient algorithms for model
checking pushdown systems, in: CAV 2000, Vol. 1855 of LNCS, Springer, 2000,
pp. 232–247.

[18] O. Kupferman, N. Piterman, M. Y. Vardi, Model Checking Linear Properties of
Prefix-Recognizable Systems, in: CAV 2002, Vol. 2404 of LNCS, Springer, 2002,
pp. 371–385. doi:10.1007/3-540-45657-0_31.

[19] J. Esparza, A. Kučera, S. Schwoon, Model checking LTL with regular valuations
for pushdown systems, Information and Computation 186 (2) (2003) 355–376.
doi:10.1016/S0890-5401(03)00139-1.

[20] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, M. Yannakakis, Anal-
ysis of recursive state machines, ACM Trans. Program. Lang. Syst. 27 (4) (2005)
786–818. doi:10.1145/1075382.1075387.

[21] A. Bouajjani, R. Echahed, P. Habermehl, On the verification problem of non-
regular properties for nonregular processes, in: LICS ’95, 1995, pp. 123–133.
doi:10.1109/LICS.1995.523250.

[22] O. Kupferman, N. Piterman, M. Y. Vardi, Pushdown Specifications, in: LPAR
2002, Vol. 2514 of LNCS, Springer, 2002, pp. 262–277. doi:10.1007/

3-540-36078-6_18.

[23] R. W. Floyd, Syntactic Analysis and Operator Precedence, JACM 10 (3) (1963)
316–333. doi:10.1145/321172.321179.

[24] S. Crespi Reghizzi, D. Mandrioli, D. F. Martin, Algebraic Properties of Operator
Precedence Languages, Information and Control 37 (2) (1978) 115–133. doi:

10.1016/S0019-9958(78)90474-6.

[25] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, F. Panella, M. Pradella, Parallel
parsing made practical, Sci. Comput. Program. 112 (2015) 195–226. doi:10.

1016/j.scico.2015.09.002.

[26] S. Crespi Reghizzi, D. Mandrioli, Operator Precedence and the Visibly Pushdown
Property, JCSS 78 (6) (2012) 1837–1867. doi:10.1016/j.jcss.2011.12.

006.

[27] V. Lonati, D. Mandrioli, F. Panella, M. Pradella, Operator precedence languages:
Their automata-theoretic and logic characterization, SIAM J. Comput. 44 (4)
(2015) 1026–1088. doi:10.1137/140978818.

[28] C. Lautemann, T. Schwentick, D. Thérien, Logics for context-free languages, in:
CSL ’94, 1994, pp. 205–216. doi:10.1007/BFb0022257.

[29] D. Mandrioli, M. Pradella, Generalizing input-driven languages: Theoretical and
practical benefits, Computer Science Review 27 (2018) 61–87. doi:10.1016/

j.cosrev.2017.12.001.

51

https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-45657-0_31
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1007/3-540-36078-6_18
https://doi.org/10.1007/3-540-36078-6_18
https://doi.org/10.1145/321172.321179
https://doi.org/10.1016/S0019-9958(78)90474-6
https://doi.org/10.1016/S0019-9958(78)90474-6
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1137/140978818
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1016/j.cosrev.2017.12.001

[30] R. Alur, D. Fisman, Colored nested words, in: LATA 2016, Springer, 2016, pp.
143–155. doi:10.1007/978-3-319-30000-9_11.

[31] R. Alur, Marrying words and trees, in: PODS ’07, ACM, 2007, pp. 233–242.
doi:10.1145/1265530.1265564.

[32] D. Grune, C. J. Jacobs, Parsing techniques: a practical guide, Springer, New York,
2008. doi:10.1007/978-0-387-68954-8.

[33] C. A. R. Hoare, An axiomatic basis for computer programming, Commun. ACM
12 (10) (1969) 576–580. doi:10.1145/363235.363259.

[34] D. Abrahams, Exception-Safety in Generic Components, in: Generic Program-
ming, Springer, 2000, pp. 69–79. doi:10.1007/3-540-39953-4_6.

[35] T. Jensen, D. Le Metayer, T. Thorn, Verification of control flow based security
properties, in: Proc. ’99 IEEE Symp. on Security and Privacy, 1999, pp. 89–103.
doi:10.1109/SECPRI.1999.766902.

[36] D. M. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic: Mathematical Foun-
dations and Computational Aspects, Oxford University Press, New York, NY,
USA, 1994.

[37] P. Wolper, M. Y. Vardi, A. P. Sistla, Reasoning about infinite computation paths,
in: SFCS ’83, 1983, pp. 185–194. doi:10.1109/SFCS.1983.51.

[38] S. Crespi Reghizzi, L. Breveglieri, A. Morzenti, Formal Languages and Compi-
lation, Second Edition, Texts in Computer Science, Springer, 2013.

[39] U. Heuter, First-order properties of trees, star-free expressions, and aperiod-
icity, RAIRO-Theor. Inf. Appl. 25 (2) (1991) 125–145. doi:10.1051/ita/

1991250201251.

[40] W. Thomas, Logical aspects in the study of tree languages, in: Proc. Ninth Collo-
quium on Trees in Algebra and Programming, Cambridge University Press, 1984,
pp. 31–49.

[41] A. Potthoff, W. Thomas, Regular tree languages without unary symbols are star-
free, in: Fundamentals of Computation Theory, Springer, 1993, pp. 396–405.

52

https://doi.org/10.1007/978-3-319-30000-9_11
https://doi.org/10.1145/1265530.1265564
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.1109/SECPRI.1999.766902
https://doi.org/10.1109/SFCS.1983.51
https://doi.org/10.1051/ita/1991250201251
https://doi.org/10.1051/ita/1991250201251

	Introduction
	Operator Precedence Languages and Automata
	Operator Precedence Infinite Languages

	Operator Precedence Temporal Logic
	Syntax and Informal Semantics
	Formal Semantics
	Examples

	Relationship with Nested Words
	Model Checking Operator Precedence Languages
	LTL Operators
	Matching Next Operator
	Matching Back Operator
	Summary Until or Since Operator
	Yield-Precedence Hierarchical Until Operator
	Yield-Precedence Hierarchical Since Operator
	Take-Precedence Hierarchical Until Operator
	Take-Precedence Hierarchical Since Operator
	Global correctness

	OPTL on Infinite Words and its Model Checking
	Matching Next Operator
	Summary Until Operator
	Yield-Precedence Hierarchical Until Operator
	Correctness

	Conclusions

