
Verification of Programs with Exceptions
through Operator Precedence Automata

Francesco Pontiggia1, Michele Chiari1[0000−0001−7742−9233], and Matteo
Pradella1,2[0000−0003−3039−1084]

1 DEIB, Politecnico di Milano, Italy, name.surname@polimi.it
2 IEIIT, Consiglio Nazionale delle Ricerche, Italy

Abstract. Operator Precedence Languages are one of the most expres-
sive classes of context-free languages that enable Model Checking. Re-
cently, the First-Order complete Precedence Oriented Temporal Logic
(POTL) has been introduced for expressing properties on models de-
fined through Operator Precedence Automata (OPA), a variant of Push-
down Automata for OPLs; moreover, an efficient tool called Precedence
Oriented Model Checker (POMC) was devised for POTL. We propose
here the core algorithms of POMC for on-the-fly depth-first exploration
of the search space: for OPA, a reachability algorithm; for their ω-word
variant, a fair-cycle detection algorithm. We have refined the tool with
a user-friendly DSL called MiniProc for expressing procedural code with
exceptions. We show how the expressiveness of POMC can be used to
verify programs which make use of exceptions, thus overcoming the lim-
its of LTL-based Model Checking. We demonstrate the effectiveness of
POMC through a case study.

Keywords: Linear Temporal Logic · Operator Precedence Languages ·

Model Checking · Software Verification · Exceptions

1 Introduction

In Model Checking, some of the most critical aspects are how to specify the model
and the properties to be verified. Different formalisms have been proposed in the
literature, and some have been successfully exploited due to their ease of devel-
opment and nice performances when implemented in practice. Well-established
tools (such as SPIN [19]) usually support the verification of properties expressed
in Linear Temporal Logic (LTL) on models provided as Transition Systems or
Finite State Automata (generally Büchi automata). Unfortunately, LTL can ex-
press only the First-Order definable fragment of regular languages. Transition
Systems, although they can have an infinite set of states, thus being non-regular,
are more suitable for hardware verification, since they do not have the concept
of stack. Conversely, many relevant program behaviors regard execution traces
composed of matching and nested (possibly even recursive) function calls and
returns, hence they involve the manipulation of the stack. They are context-free,
and cannot be modeled by regular formalisms; likewise, many useful properties

2 F. Pontiggia, M. Chiari, M. Pradella

cannot be specified on them with LTL. To mention one, the evolution of the
call stack of active subroutines (to verify stack inspection properties at a certain
point of the execution [13,20]).

To fill this gap, attempts have been made by introducing logics based on
languages which are context-free, but enjoy many nice properties of regular lan-
guages, and are regarded as being in the middle between context-free and regular
languages. They are informally defined as Structured Context Free Languages
[23], because the structure of the syntax tree of a sentence is built in the sen-
tence itself, and in many cases immediately visible. Remarkable results have been
obtained with Visibly Pushdown Languages (VPL) [7], and the derived logics
CaRet [6] and Nested Word Temporal Logic (NWTL) (which is First-Order com-
plete) [2]. In VPLs, sentences embed matches between characters: these matches
are used to model function calls and returns. Consequently, with NWTL it is pos-
sible to define specifications on generic procedural programs [4]. Unfortunately,
the matching relation is necessarily one-to-one. This property makes VPLs and
NWTL not suitable to deal with behaviors in which a single event must be put
in relation with multiple ones: for example, exception handling (e.g., to ver-
ify exception safety properties [1]), and context-switching policies in real time
operating systems.

Regarding the modelling formalisms, Extended Recursive State Machines
(ERSMs) and Pushdown Systems are equivalent abstractions [3] which have been
proposed to model generic imperative programming languages. On the practical
side, the former is supported by the tool VERA [5], which adopts an on-the-fly
approach to perform reachability and fair-cycle detection analysis. Conversely,
the latter is supported by the MOPED model checker [21,12,14], a BDD-based
LTL model checker. However, none of them accepts CaRet or NWTL specifica-
tions. Both tools are able to deal with the family of Boolean Programs [8], which
have a closer syntax to that of a program with assignments. They present proce-
dures with call-by-value parameter passing and recursion, and a restricted form
of recursion. With respect to ERSMs and Pushdown Systems, they do not allow
array or bounded-integer variables. All the three formalisms do not present ex-
ceptions. Boolean programs are used in the SLAM verification toolkit [9]. SLAM
provides a regression test suite made of 64 C programs, that are automatically
abstracted and translated into Boolean Programs, and then verified through the
ad-hoc BEBOP [8] model checker.

Operator Precedence Languages (OPLs) are a class of Context Free Lan-
guages introduced for efficient parsing [15]. Recently, their investigation has been
resumed and applied to verification. OPLs allow to specify a many-to-one or one-
to-many relation between sentence characters, and thus strictly include the class
of VPLs [23]. Therefore, this class is a good fit for the verification of the men-
tioned exception handling behaviors or context-switching policies. A new logic
based on OPLs, named Precedence Oriented Temporal Logic (POTL) [11], has
been introduced, overcoming the previous, less expressive Operator Precedence
Temporal Logic (OPTL) [10].

Verification of Programs with Exceptions through OPA 3

Alongside, a formal definition of the class of automata corresponding to
OPLs has been given, with Operator Precedence Automata (OPA), and Opera-
tor Precedence Büchi Automata (OPBA) [22] which are OPA accepting infinite
(or ω-) Operator Precedence words. The languages accepted by OPBA are called
Operator Precedence ω-Languages (ω-OPLs). A first step towards the practical
application of OP languages to the verification of real world programs has been
taken in [11], which deals with some simple case studies regarding only hand-
made OPA—hence, finite-word—models. In this paper we go a step further, and
present the latest version of POMC3, the Precedence Oriented Model Checker.
POMC has been completed with an implementation of the model checking al-
gorithm for ω-languages, therefore the tool now fully supports OPBA models.

To this regard, we outline the implemented reachability (for OPA) and fair-
cycle detection (for OPBA) algorithms. The models can be provided either as
plain automata or through a domain-specific language (DSL) called MiniProc,
internally converted into automata by POMC. Although not Turing complete,
MiniProc resembles mainstream programming languages. Thanks to these ad-
vancements, we present a larger case study on the Quicksort algorithm. We study
three different implementations of the recursive Quicksort algorithm by model-
ing them with MiniProc. In particular, the third one is equipped with exception
handling constructs: we verify on it various relevant properties, ranging from
exception safety to stack inspection.

The paper is organized as follows: Sections 2 and 3 provide theoretical back-
ground and definitions; Section 4 describes the model-checking algorithms im-
plemented in POMC; Section 5 describes the MiniProc DSL; Section 6 reports
the QuickSort case study; Section 7 concludes with future work directions.

2 Background: Operator Precedence Languages

We assume some familiarity with classical formal language theory concepts
such as context-free grammar, parsing, shift-reduce algorithm, syntax tree (ST)
[17,18]. Operator Precedence Languages (OPLs) are usually defined through
their generating grammars [15]; in this paper, however, we characterize them
through their accepting automata [22] which are the natural way for stating
equivalence properties with logic characterization, and for model checking. Read-
ers not familiar with OPLs may refer to [23] for more explanations on the fol-
lowing basic concepts.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
6∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {l, .=,m}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the
pair (Σ,M) an operator precedence alphabet. Relations l, .=,m, are respectively
named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the

3 https://github.com/michiari/POMC

https://github.com/michiari/POMC

4 F. Pontiggia, M. Chiari, M. Pradella

ending #. If M(a, b) = π, where π ∈ {l, .=,m}, we write a π b. For u, v ∈ Σ+ we
write u π v if u = xa and v = by with a π b. The role of PRs is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” m can match more than one “opening” l. Despite their graphical
appearance, PRs are not ordering relations.

Definition 1. An operator precedence automaton (OPA) is a tuple A = (Σ,
M,Q, I, F, δ) where: (Σ,M) is an operator precedence alphabet, Q is a finite set
of states (disjoint from Σ), I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the
union of the three disjoint relations δshift ⊆ Q×Σ×Q, δpush ⊆ Q×Σ×Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are—possibly partial—functions.

To define the semantics of OPA, we need some new notations. Letters p, q, pi,

qi, . . . denote states in Q. We use q0
a−→ q1 for (q0, a, q1) ∈ δpush , q0

a
99K q1 for

(q0, a, q1) ∈ δshift , q0 q2
=⇒ q1 for (q0, q2, q1) ∈ δpop , and q0

w; q1, if the automaton
can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ ×Q and Γ ′ = Γ ∪ {⊥} be the
stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ ,
n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1, smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ〉, where w ∈ Σ∗#, q ∈ Q,

and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 ` c1 ` . . . ` cn of
moves or transitions ci ` ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:
push move: if smb(γ)l a then 〈ax, p, γ〉 ` 〈x, q, [a, p]γ〉, with (p, a, q) ∈ δpush ;

shift move: if a
.
= b then 〈bx, q, [a, p]γ〉 ` 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift ;

pop move: if am b then 〈bx, q, [a, p]γ〉 ` 〈bx, r, γ〉, with (q, p, r) ∈ δpop .
Shift and pop moves are not performed when the stack contains only ⊥. Push

moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the m
relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | 〈x#, qI , ⊥〉 `∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
PRs and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . c`]
c`+1 is a string c0c1c2 . . . c`c`+1, such

that: c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ` (` ≥ 1), and c0 l c1
.
=

c2 . . . c`−1
.
= c`mc`+1. A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where

c0 [c1c2 . . . c`]
c`+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such

that ci [si]
ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , ` (` ≥ 1).

Such a composed chain will be written as c0 [s0c1s1c2 . . . c`s`]
c`+1 . c0 (resp. c`+1)

is called its left (resp. right) context; all symbols between them form its body.

Verification of Programs with Exceptions through OPA 5

call ret han exc stm

call l .
= l m l

ret m m m m m
han l m l .

= l
exc m m m m m
stm m m m m m

·

call1 ·

·

·

han2 ·

call3 ·

call4 ·

call5

exc6

call7 ret8

call9 ret10

ret11

#0 #12

Fig. 1. OPM Mcall (left) and the ST corresponding to word w′
ex (right). Dots are

internal nodes.

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

As an example, consider word wex = call han call call exc call ret ret on
alphabet Σcall = {call, ret, exc,han, stm}, which is compatible with Mcall of
Fig. 1. wex models the execution trace of a program: first, a function is called; it
installs an exception handler han, and then two more function calls occur. The
last one throws an exception exc, which is caught by the handler. Before return-
ing, the first function calls another one, which returns immediately. wex has a
clear structure: calls should match rets or excs that terminate them, and hans
to excs they catch. Label stm represents a generic statement (e.g. an assign-
ment), but we do not use it for now. Such structure is encoded by chains, which
can be identified through the traditional operator precedence parsing algorithm.
We apply it to wex (for a more complete treatment, cf. [23,17]).

First, write all precedence relations between consecutive characters, accord-
ing to Mcall. Then, recognize all innermost patterns of the form alc .= · · · .= cmb
as simple chains, and remove their bodies. Then, write the precedence relations
between the left and right contexts of the removed body, a and b, and iterate
this process until only ## remains. This procedure is applied to wex as follows:

1 # l call l han l call l call m exc m call
.
= ret m ret m #

2 # l call l han l call m exc m call
.
= ret m ret m #

3 # l call l han
.
= exc m call

.
= ret m ret m #

4 # l call l call
.
= ret m ret m #

5 # l call
.
= ret m #

6 #
.
= #

The chain body removed in each step is underlined. In step 1, call[call]exc is
a simple chain, so its body call is removed. Then, in step 2 we recognize the

6 F. Pontiggia, M. Chiari, M. Pradella

simple chain han[call]exc, which means han[call[call]]exc, where [call] is the
chain body removed in step 1, is a composed chain. This way, we recognize,
e.g., han[call]exc, call[han exc]call as simple chains, and han[call[call]]exc and
call[han[call[call]]exc]call as composed chains (with inner chain bodies enclosed
in brackets). Below we show the structure of w′ex a longer version of wex , which
is an isomorphic representation of its ST as depicted in Fig. 1.

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Each chain corresponds to an internal node, and the fringe of the subtree rooted
at it is the chain’s body.

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c`]
c`+1

any path in A of the form q0
c1−→ q1 99K . . . 99K q`−1

c`
99K q`

q0
=⇒ q`+1. The

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relation c`m c`+1. We call a support for the composed

chain c0 [s0c1s1c2 . . . c`s`]
c`+1 any path in A of the form q0

s0; q′0
c1−→ q1

s1; q′1
c2
99K

. . .
c`
99K q`

s`; q′`
q′0=⇒ q`+1 where, for every i = 0, 1, . . . , `: if si 6= ε, then qi

si; q′i
is a support for the chain ci [si]

ci+1 , else q′i = qi.
Chains fully determine the parsing structure of any OPA over (Σ,M). If

the OPA performs the computation 〈sb, qi, [a, qj]γ〉 `∗ 〈b, qk, γ〉, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . c`s` and q`+1 = qk.

The OP Max-Automaton overΣ,M isA(Σ,M) = (Σ,M, {q}, {q}, {q}, δmax)
where δmax(q, q) = q, and δmax(q, c) = q, ∀c ∈ Σ. Each chain has a support in
A(Σ,M). Since there is a chain #[s]# for any string s compatible with M , a
string is accepted by A(Σ,M) iff it is compatible with M . If M is complete,
each string is accepted by A(Σ,M), which defines the universal language Σ∗ by
assigning to any string the unique structure compatible with M .

In conclusion, given an OP alphabet, the OPM M assigns a unique structure
to any compatible string in Σ∗; unlike VPLs, such a structure is not visible
in the string, and must be built by means of a non-trivial parsing algorithm.
An OPA defined on the OP alphabet selects an appropriate subset within the
“universe” of strings compatible with M . For a more complete description of the
OPL family and of its relations with other CFL we refer the reader to [23].

Operator Precedence ω-Languages. All definitions regarding OPLs are extended
to infinite words in the usual way. Given an alphabet (Σ,M), an ω-word w ∈ Σω

is compatible with M if every prefix of w is compatible with M . OP ω-words
are not terminated by #. An ω-word may contain never-ending chains of the
form c0 l c1

.
= c2

.
= · · · , where the l relation between c0 and c1 is never closed

by a m. Such chains are called open chains and may be simple or composed. A
composed open chain may contain both open and closed chains.

We define the class of automata accepting the whole class of ω-OPLs by
augmenting Definition 1 with Büchi acceptance condition [22]. Hence, the name
Operator Precedence Büchi Automata (OPBA). The semantics of configura-

Verification of Programs with Exceptions through OPA 7

l call l han l call l call l call m exc m call
.
= ret m call

.
= ret m ret m #

pA pB pC pC pErr pErr pErr pErr pA
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. w′
ex as an OP word, with edges showing the χ relation. Normal atomic propo-

sitions are below those in Mcall: pl means a call or a ret is related to procedure pl.

tions, moves and infinite runs are defined as for finite OPA. For the accep-
tance condition, let ρ be a run on an ω-word w. Define Inf(ρ) = {q ∈ Q |
there exist infinitely many positions i s.t. 〈βi, q, xi〉 ∈ ρ} as the set of states that
occur infinitely often in ρ. ρ is successful iff there exists a state qf ∈ F such that
qf ∈ Inf(ρ). An OPBA A accepts w ∈ Σω iff there is a successful run of A on
w. The ω-language recognized by A is L(A) = {w ∈ Σω | A accepts w}. Unlike
OPA, OPBA do not require the stack to be empty for word acceptance: when
reading an open chain, the stack symbol pushed when the first character of the
body of its underlying simple chain is read remains into the stack forever; it is
at most updated by shift moves.

The most important closure properties of OPLs are preserved by ωOPLs.

3 Background: Precedence Oriented Temporal Logic

Here we only describe a fragment of POTL, as not all of its operators are needed
for our case study. For the full syntax, see [11]. Given a finite set of atomic
propositions AP , a ∈ AP , and t ∈ {d, u}, the syntax of POTL follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | #tϕ | �tϕ | χtFϕ | χtPϕ | ϕ U tχ ϕ | ϕ Stχ ϕ.

The semantics of POTL is based on the word structure—also called OP word
for short—(U,MAP , P), where U = {0, 1, . . . , n, n+1} is a set of word positions;
P : U → P(AP) is a function associating each position with the set of atomic
propositions holding in it, with P (0) = P (n+ 1) = {#}. MAP is only defined on
a subset of AP , and exactly one of such labels may hold in each position. Given
i, j ∈ U and a PR π, we write i π j to say that a ∈ P (i), b ∈ P (j) and a π b.

We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i, j iff i < j− 1, and i and j are resp. the left and right contexts of the
same chain. For composed chains, χ may not be one-to-one, but also one-to-many
or many-to-one.

The truth of POTL formulas is defined w.r.t. a single word position. Let
w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P (i). Operators such as ∨ and ¬ have the usual semantics from
propositional logic.

The downward next and back operators #d and �d are true only if the next
(resp. current) position is at a lower or equal ST level than the current (resp.

8 F. Pontiggia, M. Chiari, M. Pradella

preceding) one; replace ‘lower’ with ‘higher’ for the upward versions #u and �u.
Formally, (w, i) |= #dϕ iff (w, i + 1) |= ϕ and i l (i + 1) or i

.
= (i + 1), and

(w, i) |= �dϕ iff (w, i − 1) |= ϕ, and (i − 1) l i or (i − 1)
.
= i. Substitute m for

l to obtain the semantics for #u and �u. E.g., we can write #dcall to say that
the next position is an inner call (holds in pos. 2, 3, 4 of Fig. 2), �dcall to say
that the previous position is a call, and the current is the first of the body of a
function (pos. 2, 4, 5), or the ret of an empty one (pos. 8, 10).

The chain next and back operators χtF and χtP , t ∈ {d, u}, evaluate their
argument resp. on future and past positions in the chain relation with the current
one. The downward (resp. upward) variant only considers chains whose right
context goes down (resp. up) in the ST. Formally, (w, i) |= χdFϕ iff there exists
j > i such that χ(i, j), i l j or i

.
= j, and (w, j) |= ϕ. (w, i) |= χdPϕ iff there

exists j < i such that χ(j, i), jl i or j
.
= i, and (w, j) |= ϕ. Replace l with m for

the upward versions. In Fig. 2, χuFexc is true in call positions whose procedure
is terminated by an exception thrown by an inner procedure (e.g. pos. 3 and 4).
χuP call is true in exc statements that terminate at least one procedure other
than the one raising it, such as the one in pos. 6. Note that these examples are
not meant to be exhaustive: e.g., χuP call holds also in position 11, and so on.

The summary until ψU tχ θ (resp. since ψStχ θ) operator is obtained by induc-
tively applying the #t and χtF (resp. �t and χtP) operators. It holds in a position
in which either θ holds, or ψ holds together with #t(ψ U tχ θ) (resp. �t(ψ Stχ θ))
or χtF (ψ U tχ θ) (resp. χtP (ψ Stχ θ)). It is an until operator on paths that can move
not only between consecutive positions, but also between contexts of a chain,
skipping its body. With Mcall, this means skipping function bodies. The down-
ward variants can move between positions at the same level in the ST (i.e., in
the same simple chain body), or down in the nested chain structure. The upward
ones remain at the same level, or move to higher levels of the ST.

E.g., > Uuχ exc is true in positions contained in the frame of a function
terminated by an exception. It is true in pos. 3 of Fig. 2 because of path 3-6,
and false in pos. 1, because no path can enter the chain whose contexts are pos. 1
and 11. Formula >Udχ exc is true in call positions whose function frame contains

excs, such as the one in pos. 1 (with path 1-2-6). call Udχ (ret ∧ pErr) holds in
pos. 1 because of path 1-7-8 and 1-9-10, (call ∨ exc) Suχ pB in pos. 7 because of
path 3-6-7, and (call ∨ exc) Uuχ ret in 3 because of path 3-6-7-8.

We additionally employ >, ∧, =⇒ and ⇐⇒ with the usual semantics form
propositional logic. We also use the operators 3 and � from LTL. They can be
expressed in POTL as �ψ := ¬(> Uuχ (> Udχ ¬ψ)) and 3ψ := ¬�¬ψ.

4 Model Checking OPA

We model-check POTL through the automata-theoretic procedure introduced
in [11]. For any formula ϕ, we build an OPA (or OPBA) Aϕ that only accepts
models of ϕ. Then, given an OPA A to be checked, we check the product automa-
ton Aϕ ⊗A for emptiness. The product automaton can be computed on-the-fly
in a way similar to finite-state automata [22].

Verification of Programs with Exceptions through OPA 9

To cope with the state-space explosion problem, we propose an on-the-fly
depth-first explicit-state exploration of the search space. We generate OPA states
just before they are visited, and avoid wasting memory and time by generating
unreachable states. Other tools [5,19] showed the benefits of this approach, es-
pecially when combined with the early-termination property, i.e. returning im-
mediately when a counterexample is found. This has no benefits if no accepting
state is ever reached, and the entire search space needs to be visited. On the
other hand, it speeds up considerably cases when there is a counterexample.

Reachability. OPA are equipped with a stack, which must be considered when
exploring the search space. Given an OP alphabet (Σ,M), let A = (Σ,M,Q, I,
F, δ) be an OPA, and Γ = Σ ×Q× {⊥} be the set of stack symbols.

Definition 3. A semi-configuration of A is an element of C = Q× Γ .

Definition 4. The reachability relation is defined as Rreach ⊆ C × C × Σ so
that, for any p, q ∈ Q, look-ahead a ∈ Σ, and g0, g1 ∈ Γ , we have

Rreach(p, g0, q, g1, a) iff 〈xay, p, g0〉 `∗ 〈ay, q, g1γ〉,
for some x, y ∈ Σ∗, γ ∈ Γ ∗.

To determine the (non) emptiness of L(A), we must establish whether there
exist some qi ∈ I, qf ∈ F such that (qi,⊥, qf ,⊥,#) ∈ Rreach.

Algorithm 1 solves the reachability problem for OPA by adapting a DFS
to the use of summaries, similarly to [5]. It consists of an on-the-fly, early-
terminating exploration to check if a given set QR × ΓR of target semicon-
figurations is reachable in an OPA A. Function Reach receives as its argu-
ments a state q ∈ Q, a stack symbol g ∈ Γ , a character c ∈ Σ, and a look-
ahead ` ∈ Σ ∪ {∗}. If ` = ∗, then the look-ahead may be any character in Σ.
The algorithm searches the transition graph and stops when it reaches a semi-
configuration (q, g) ∈ QR×ΓR. To solve the emptiness problem for OPA, we pose
QR = F and ΓR = {⊥}, and call Reach(q,⊥,#, ∗) for each q ∈ I. Each call to
Reach has worst-case time complexity O(|δ||δpush |2|Σ|) and space complexity
O(|δ||δpush ||Σ|). Note that the above bounds are reached only if the whole OPA
is visited, i.e. when L(A) is empty. Also, if Σ contains sets of atomic proposi-
tions, we consider only those on which the OPM is defined. E.g., with Mcall we
use only elements of Σcall as look-aheads, and |Σcall| is a small constant.

Summary Transitions. Suppose we are in a semiconfiguration (ql, g) which can
be followed by a push transition (ql, b, r). This transition is the beginning of a
chain support (let it be σ) that starts with symbol b. If we apply the reachability
algorithm recursively, we may meet the push transition (ql, b, r) again, which
would lead us to the beginning of σ. To avoid a never-ending computation,
we cannot follow it. At the same time, a semiconfiguration sp = (qp, gp) may be
reachable such that qp has a pop transition (qp, ql, qr) which completes σ. sp may
not have been visited yet, due to the depth-first nature of the search, although

10 F. Pontiggia, M. Chiari, M. Pradella

it would allow us to continue the visit without getting stuck. We need to find a
way to “suspend” the search and resume it later.

As a solution, we use a global variable (called SupportStarts) where we store
semiconfigurations corresponding to the beginning of a chain support σ. While
visiting σ, the algorithm matches all saved semiconfigurations for σ trying to
perform a pop transition, thus completing σ and resuming the suspended explo-
rations.

To establish if a saved semiconfiguration (qcandl , gcand) is valid for σ, it must
make sure that smb(gcand) yields precedence to the first symbol read by σ (b in
our example). This symbol is carried by parameter c in the Reach algorithm.
Likewise, parameter l is used to restrict the set of possible characters to read
after a pop transition only to those with which the input part of the stack symbol
is in a m relation when popping.

This solution allows us to suspend the search safely when we encounter the
beginning of a support in an already-visited semiconfiguration: if a way to go
beyond exists, it will be explored. Therefore, we introduce summary transitions,
which connect the first state of a chain support (ql in our example) to the
corresponding last state (qr).

The algorithm also stores in SupportEnds a semiconfiguration whenever it
exits a chain support. Thus, when it finds in a semiconfiguration the beginning
of a support that has already been visited, it uses this pre-computed information
to jump to the corresponding pop move directly.

Algorithm 1 OPA semi-configuration reachability

1: (Σ,MΣ , Q, I, F, (δpush , δshift , δpop)) := A
2: V := SupportStarts := SupportEnds := ∅
3: function Reach(q, g, c, `)
4: if (q, g, `) ∈ V ∨ (q, g, ∗) ∈ V then return false

5: V := V ∪ (q, g, `)
6: if q ∈ QR ∧ g ∈ ΓR then return true

7: a := smb(g)
8: for all (q, b, p) ∈ δpush s.t. al b ∧ (b = ` ∨ ` = ∗) do
9: SupportStarts := SupportStarts ∪ {(q, g, c)}

10: if Reach(p, [b, q], b, ∗) then return true

11: for all (s, q, c′, `′) ∈ SupportEnds s.t. al c′ do
12: if Reach(s, g, c, `′) then return true

13: if g 6= ⊥ then
14: [a, r] := g
15: for all (q, b, p) ∈ δshift s.t. a

.
= b ∧ (b = ` ∨ ` = ∗) do

16: if Reach(p, [b, r], c, ∗) then return true

17: for all (q, r, p) ∈ δpop , b ∈ Σ ∪ {#} s.t. am b ∧ (b = ` ∨ ` = ∗) do
18: SupportEnds := SupportEnds ∪ {(p, r, c, b)}
19: for all (r, g′, c′) ∈ SupportStarts s.t. smb(g′) l c do
20: if Reach(p, g′, c′, b) then return true

21: return false

Verification of Programs with Exceptions through OPA 11

Fair-Cycle Detection. We propose an adaptation of the reachability algorithm
to the fair-cycle detection problem. Given an OPBA Aωϕ = 〈P(AP),MAP , Qω, I,
F, δ〉, algorithm Fair-cycle-detect models the search space as a graph where
vertices are semiconfigurations and edges are OPBA transitions, and looks for
fair cycles, i.e. loops containing a state qω ∈ F . To preserve the early-termination
and on-the-fly properties, we follow an online approach: we represent and update
Strongly Connected Components (SCCs) using an incremental algorithm while
the Reach procedure discovers new portions of the graph. The algorithm we
chose is a path-based depth-first search due to H. Gabow [16]. This algorithm
finds SCCs and updates them dynamically in time linear on the number of graph
nodes. It allows us to stop the search as soon as a non-trivial fair SCC is found.
Otherwise, at the end it outputs the SCCs graph. It represents SCCs with simple
auxiliary data structures such as stacks and arrays (hence the name list-based
used in [16]) without contracting nodes in the actual graph. For performance
reasons, we slightly modify our implementation to perform contractions.

Combining the Reach and Gabow routines into Fair-cycle-detect is a
crucial issue. A summary edge (corresponding to a summary transition) is added
to the graph when we encounter a pop transition at the end of a chain support.
Thus, the edge may be in a completely different part of the graph with respect to
the current node. If followed, it breaks the depth-first property, which is required
by the Gabow algorithm. Instead of restarting it for every pop transition, our
solution is to save all the summary edges and process them later. Fair-cycle-
detect is then divided into two phases:

– a search phase when we discover new edges, following OPBA transitions,
starting from the current initial semiconfigurations. If we find a summary
edge, we do not feed it to the Gabow routine, but store it in the set Summ.

– a collapse phase when we add to the graph the summary edges in Summ,
and run only the dynamic Gabow routine on it.

At the end of the collapse phase, we resume the exploration from semiconfigura-
tions corresponding to the discovered summary transitions in Summ. If the set
Summ is empty at the end of a search phase, there is no reachable fair cycle,
and the algorithm terminates.

5 Modeling Procedural Programs

We use a simple procedural programming language with exceptions called Mini-
Proc, which only admits Boolean variables. Its syntax is shown in Fig. 3.

A program starts with a variable declaration, which must include all variables
used in the program. Then, a sequence of functions are defined, the first one being
the entry-point to the program. Function bodies consist of semicolon-separated
statements. Assignments, while loops and ifs have the usual semantics. The try-
catch statement executes the catch block whenever an exception is thrown by any
statement in the try block (or any function it calls). Exceptions are thrown by
the throw statement, and they are not typed (i.e., there is no way to distinguish

12 F. Pontiggia, M. Chiari, M. Pradella

PROGRAM = [DECLS] FUNCTION [FUNCTION ...]
DECLS = var IDENTIFIER [, IDENTIFIER ...] ;
FUNCTION = IDENTIFIER () { STMT; [STMT; ...] }
STMT = IDENTIFIER := BEXPR

| while (BEXPR) { [STMT; ...] }
| if (BEXPR) { [STMT; ...] } else { [STMT; ...] }
| try { [STMT; ...] } catch { [STMT; ...] }
| IDENTIFIER()
| throw

BEXPR = BEXPR && BDISJ | BDISJ
BDISJ = BDISJ || BTERM | BTERM
BTERM = !BTERM | (BEXPR) | IDENTIFIER | true | false

program:
var foo;
pa() {

foo = true;
try { pb(); }
catch { pc(); }

}
pb() {

if (foo) { throw; }
else {}

}
pc() { }

Fig. 3. MiniProc syntax (left) and a MiniProc program (right). Non-terminals are
uppercase, and keywords lowercase. Parts in square brackets are optional, and ellipses
mean that the enclosing group can be repeated zero or more times. An IDENTIFIER is
any sequence of letters, numbers, or characters ‘.’, ‘:’ and ‘ ’, starting with a letter or
an underscore.

M0 A0 A1 A2 B0 B1 B2 A3 C0 C1

B3 B4 A4 A5 A6 A7

B5 B6

M1

call

pA

stm foo:=true

A0 han

call
pB

foo

A2 exc A1 call

pC

ret

pC

A3
call pB

¬foo
ret

pB

A2 exc

dummy

A1 ret

pA

M0

exc M0

M0

M1

A0 A2 A3 B0 B1 B2 A4 C0 C1

A5A6M2A1

call
pA

foo

call

pA

stm

stm
foo
A0,A1 han

foo

call
pB

foo

A3 exc

foo

A2

call
pC

foo

ret
pC

foo

A3ret
pA

foo

M0,M1

Fig. 4. Extended OPA (top) and OPA (bottom) generated from the code of Fig. 3.

different kinds of exceptions). Functions can be called by prepending their name
to the () token (they do not admit arguments, as all variables are global). Since
all variables are Boolean, expressions can be composed with the logical and (&&),
or (||) and negation (!) operators.

OPA and OPBA semantically equivalent to a MiniProc program can be gen-
erated automatically, both based on OPM Mcall. We illustrate their construction
through examples. First, an extended OPA is generated, in which every state cor-
responds to some program state, and transitions can be labeled with Boolean
expression guards that must be true for them to be performed, or variable as-
signments. Fig. 4 shows the extended OPA from the code in Fig. 3. The stack
semantics of the two models coincide: a symbol is pushed for every function
call, and popped after the corresponding return (or exception). Handlers are
paired to the exception they catch by a shift move updating the same symbol;
a dummy exception is placed after the try body to uninstall the handler. The

Verification of Programs with Exceptions through OPA 13

model-checking procedures of Section 4 do not take guards into account, so the
extended OPA must be transformed into a normal one. This is done by enumer-
ating all possible Boolean variable assignments for each state, leaving only those
that are actually reachable. The resulting OPA for our example is in Fig. 4.

The last part of the OPA generation leads to a worst-case model size expo-
nential in the number of variables. However, it performs well in most practical
cases, since only feasible states are generated.

6 Experiments

We show how to use POMC to verify programs with exceptions with some ex-
periments on real code for a well-known recursive algorithm, Quicksort. The
properties we want to verify on an implementation of this algorithm are:

termination: the program always terminates for any input array.
correctness: any input array is correctly sorted at the end of the program.

We begin with two C programs packaged with the first version of the MOPED
model checker [21,12,14]. Then, we move to a refinement which is targeted specif-
ically to POMC. We call it semi-safe Java Quicksort, because of how it han-
dles possible NullPointerExceptions. This experiment cannot be conducted
on MOPED or tools such as VERA [5] or BEBOP [8], since their models require
a matching single return statement for every function call. On the other hand,
exceptions pop an indefinite amount of function frames on the stack until they
meet a handler. With such formalisms, the automaton would be forced to read
as many input symbols as the amount of popped function frames, thus consum-
ing a portion of code from the catch block. In the following, the comparison of
the three examples will allow the reader to grasp the greater expressive power
of POMC. The experimental results and their execution times are reported in
Table 1.

Buggy C QuickSort. The first one, called Buggy Quicksort, has been proven to
run into a infinite loop for certain values of the input array, violating the termina-
tion property. When modeling it with MiniProc, we consider an array of 2 values
for performance reasons: a[left] and a[right]. We abstract away from the ac-
tual content of the array and replace all comparisons with non-deterministic
choices, to get a smaller and better performing model. We use Boolean variables
to represent the inequalities (<,=, >) between local integer variables in the
program. Then, we use the fair-cycle detection module of POMC to detect the
mentioned never-ending loop. The problem can be expressed in terms of checking
whether the main procedure always reaches the ret statement (χuF (ret∧main),
experiment B.2). With this formula, we force the first position (the one read-
ing call main) to be in the χuF relation with the one reading the corresponding
ret main. Anyway, call is in the

.
= or m precedence relation only with ret and

exc (see 1), and no exception is thrown in this model, so exc cannot be en-
countered. Therefore, we could simply use the formula χuF>. However, the latter

14 F. Pontiggia, M. Chiari, M. Pradella

main() {
// list may contain null elements
try {

qs();
} catch (){

parseList();
// null elements removed
qs();

}
}

qs() {
. . .
accessValues();
. . .

}
parseList() {

hasParsed = true;
}

accessValues() {
if (*) {

throw;
} else {}

}

Fig. 5. A portion of the semi-safe Java Quicksort model in MiniProc.

would be less clear. Moreover, the same reasoning does not hold for the third
experiment, since it contains exceptions. Therefore, we opt for the former. As
expected, POMC returns False. Note that we can verify the termination prop-
erty also with a simple LTL formula (B.1). Since termination is not guaranteed,
it’s meaningless to investigate the correctness for this implementation.

Correct C Quicksort. The implementation of file quicksort correct.pds is
known to satisfy both the termination and correctness properties. When model-
ing it with MiniProc, again by considering an array of 2 values, we introduce two
boolean variables to indicate the relation between a[left] and a[right] ex-
plicitly. They are aleftGTaright and aleftEQaright, which respectively mean
a[left] > a[right] and a[left] = a[right]. a[left] < a[right] is indi-
cated by the expression !aleftGTaright && !aleftEQright.

First, we check for termination with the same formulas as in Buggy Quicksort
(experiments C.1 and C.2). Coherently with the early-termination property, the
execution time is much greater in this case because the formulas hold. Then, we
prove the correctness of the implementation. The algorithm is supposed to sort
the array in ascending order, so we verify that !aleftGTaright holds at the end
of the execution. There are two ways to state this. With LTL, we impose that
sooner or later !aleftGTaright will hold forever (C.3). With POTL, we impose
that the first position (the one which reads call main) is in the χuF relation with a
position where !aleftGTaright holds. As introduced in the previous example,
this position is necessarily the one reading the return statement. Therefore,
experiments C.4 and C.6 equally verify the correctness of this implementation
and both imply also the termination property. Inserting retmain is superfluous.
Finally, C.5 is meant to verify both correctness and termination together, but
with a simple LTL formula.

Semi-safe Java Quicksort. We consider the case of a Java implementation where
the elements of the Array are of a non-primitive type. Since Java does not enforce
void- (or null-) safety [24], accessing array elements may lead to a NullPoin-

terException at runtime. A semi-safe solution is to:

– First, call the Quicksort procedure inside a try-catch construct, to handle
potential exceptions.

– When the first null element is encountered and an exception is raised, parse
the array in the catch body to remove all null elements.

Verification of Programs with Exceptions through OPA 15

– Last, call again the Quicksort procedure inside the catch body. This is poten-
tially unsafe because the call is not contained in a try-catch construct. Thus,
if accessing an element raised an exception, there would be no matching
catch to handle it, and the main function would terminate abnormally. How-
ever, we know that it should not happen because of the previous processing
of the array, hence the name semi-safe. Overall termination and correctness
are not guaranteed a priori. They depend on the correctness of the pars-
ing function which ensures void safety, thus preventing the throwing of non
handled exceptions.

We model the entire procedure as a MiniProc program, by still considering a
two-elements array. A sketch is reported in Fig. 5. We hide the Quicksort imple-
mentation with dots to highlight the exception-handling constructs. Note how
the program strictly resembles real Java code. We treat the parsing function
as a black box: we only use the Boolean variable hasParsed to indicate that
the array has been processed to remove null elements. We introduce function
accessValues to represent data access.

Firstly, we note that checking general termination (S.1 and S.2) and cor-
rectness (S.3 and S.4) returns False in all cases. As a remark, since exceptions
are involved, here retmain is required in the formula of experiment S.2. Like-
wise, χuF (¬(aleftGTaright) (S.4) does not imply the termination of the main

procedure anymore. Secondly, we examine the program-handling of the potential
null-pointer exceptions. POTL can easily express properties related to exception
handling [23]. E.g., the shortcut

CallThr(ψ) := #u(exc ∧ ψ) ∨ χuF (exc ∧ ψ),

evaluated in a call, states that the procedure currently started is terminated by
an exc in which ψ holds. So, �(call ∧ ρ ∧ CallThr(>) =⇒ CallThr(θ)) means
that if precondition ρ holds when a procedure is called, postcondition θ must
hold if that procedure is terminated by an exception. In object-oriented program-
ming languages, if ρ ≡ θ is a class invariant asserting that a class instance’s state
is valid, this formula expresses weak (or basic) exception safety [1], and strong
exception safety if ρ and θ express particular states of the class instance. Alterna-
tively, postconditions may regard the type of exception which has occurred. The
no-throw guarantee can be stated with �(call ∧ pA =⇒ ¬CallThr(>)), mean-
ing procedure pA is never interrupted by an exception. To begin with, we verify
whether procedures main and qs satisfy the no-throw guarantee with experiments
S.5 and S.6: the result is False. Therefore, we inquire the conditions that lead to
the potentially raised exceptions. The formula �(call∧main∧CallThr(>) =⇒
CallThr(hasParsed)) specifies an exception-safety property meaning that, when-
ever a call to the function main is terminated by an exception, the array list has
been parsed to ensure void safety. The property can be slightly modified into
experiment S.7, which is verified. A second exception-safety property (S.8) ver-
ifies whether, in the case the main procedure is interrupted by an exception,
correctness holds after the interruption. Unfortunately, the result is False.

16 F. Pontiggia, M. Chiari, M. Pradella

However, the stack inspection property of experiment S.9 holds. It means
that every time the program accesses array values, either: i) there is a handler
on the stack to handle a potential exception, or ii) we have already processed
the array to remove null elements, thus guaranteeing void safety.

Lastly, we prove the conditional termination of this implementation (S.10
and S.11), meaning that either the program terminates or an exception is raised
after the parsing function has been called, indicating a bug in the parsing func-
tion itself. Likewise, we prove the conditional correctness (S.12 and S.13), i.e.
that either the array is correctly sorted at the end of the execution or an excep-
tion is raised after the parsing function has been called. Formula S.14 verifies
both conditional termination and correctness together.

6.1 Discussion

A limitation of the Case Study at hand is represented by the fact that all exper-
iments deal with Quicksort implementations on arrays of only 2 cells. Indeed,
it would be interesting to analyze how the tool’s performances scale to bigger
models. This is hindered by our tool’s current lack of automatic abstraction
and modeling techniques for real-world programs. For the time being, the only
feasible approach is to model by hand all the possible execution traces, which
becomes intractable for large arrays. We leave this task to future work. However,
the preliminary works on arrays of 3 cells confirms our theoretical results that
the latency is dominated by the formula (and especially formula size), and not
by the model under verification.

7 Conclusions

We presented efficient algorithms for reachability and fair-cycle detection for
OPA and OPBA. We implemented them in the POMC tool, together with a
user-friendly DSL (MiniProc) which allows to model procedural code with ex-
ceptions. We reported on a case study on the Quicksort algorithm to show the
suitability of POMC for the verification of programs with exceptions. As future
work, we plan to investigate the possibility of using POMC to verify properties
on real-world programming languages through suitable automated abstractions,
such as iterative abstraction refinement techniques. As discussed in Section 6.1,
these techniques could address the quest for investigating the tool’s performance
scaling.

Verification of Programs with Exceptions through OPA 17

Table 1. Results of verification of the Buggy Quicksort model (2259 OPBA states)
(formulas B.1 and B.2), the Correct Quicksort model (83980 OPBA states) (experi-
ments from C.1 to C.6), and the Semi Safe Correct Quicksort model (188456 OPBA
states) (formulas from S.1 to S.14). The experiments have been run on a server with
a 2.0 GHz AMD CPU and 500 GB of RAM.

Formula Time (s) Result

B.1 3(ret ∧main) 0.067 False
B.2 χuF (ret ∧main) 1.011 False
C.1 3(ret ∧main) 36.3 True
C.2 χuF (ret ∧main) 101.8 True
C.3 3(�¬aleftGTaright) 66.3 True
C.4 χuF (¬aleftGTaright) 123.2 True
C.5 3(ret ∧main ∧ ¬aleftGTaright) 49.0 True
C.6 χuF (ret ∧main ∧ ¬aleftGTaright) 222.8 True
S.1 3(ret ∧main) 284.4 False
S.2 χuF (ret ∧main) 289.0 False
S.3 3(�¬aleftGTaright) 279.5 False
S.4 χuF (¬(aleftGTaright) 276.5 False
S.5 �((call ∧main) =⇒ ¬(#uexc ∨ χuF exc)) 245.9 False
S.6 �((call ∧ qs) =⇒ ¬(#uexc ∨ χuF exc)) 246.9 False
S.7 (#uexc ∨ χuF exc) =⇒ (#uexc ∧ hasParsed) ∨ (χuF exc ∧ hasParsed) 19617.0 True
S.8 (#uexc ∨ χuF exc) =⇒ (#uexc ∧ ¬aleftGTaright) ∨ (χuF exc ∧ ¬aleftGTaright) 387.2 False

S.9 �((call ∧ accessValues) =⇒ hasParsed ∨ (> Sdχ han)) 446.2 True
S.10 (3(ret ∧main)) ∨ (χuF (exc ∧ hasParsed)) 1124.0 True
S.11 (χuF (ret ∧main)) ∨ (χuF (exc ∧ hasParsed)) 12809.0 True
S.12 (3(�¬aleftGTaright)) ∨ (χuF (exc ∧ hasParsed)) 1615.0 True
S.13 (χuF (¬aleftGTaright)) ∨ (χuF (exc ∧ hasParsed)) 12736.0 True
S.14 (3(ret ∧main ∧ ¬aleftGTaright)) ∨ (χuF (exc ∧ hasParsed) 2247.0 True

18 F. Pontiggia, M. Chiari, M. Pradella

References

1. Abrahams, D.: Exception-Safety in Generic Components. In: Generic Program-
ming. pp. 69–79. Springer (2000). https://doi.org/10.1007/3-540-39953-4 6

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin,
L.: First-order and temporal logics for nested words. LMCS 4(4) (2008).
https://doi.org/10.2168/LMCS-4(4:11)2008

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005). https://doi.org/10.1145/1075382.1075387

4. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural pro-
grams. In: Handbook of Model Checking, pp. 541–572. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8 17

5. Alur, R., Chaudhuri, S., Etessami, K., Madhusudan, P.: On-the-fly reachability and
cycle detection for recursive state machines. In: TACAS 2005. LNCS, vol. 3440,
pp. 61–76. Springer (2005). https://doi.org/10.1007/978-3-540-31980-1 5

6. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested
calls and returns. In: TACAS 2004. pp. 467–481. Springer (2004).
https://doi.org/10.1007/978-3-540-24730-2 35

7. Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: ACM STOC (2004)
8. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.

In: SPIN Model Checking and Software Verification. pp. 113–130. Springer (2000).
https://doi.org/10.1007/10722468 7

9. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV ’01. LNCS, vol. 2102, pp.
260–264. Springer (2001). https://doi.org/10.1007/3-540-44585-4 25

10. Chiari, M., Mandrioli, D., Pradella, M.: Operator precedence tempo-
ral logic and model checking. Theor. Comput. Sci. 848, 47–81 (2020).
https://doi.org/10.1016/j.tcs.2020.08.034

11. Chiari, M., Mandrioli, D., Pradella, M.: Model-checking structured context-
free languages. In: CAV ’21. LNCS, vol. 12760, pp. 387––410. Springer (2021).
https://doi.org/10.1007/978-3-030-81688-9 18

12. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer
(2000)

13. Esparza, J., Kučera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Information and Computation 186(2), 355–376 (2003).
https://doi.org/10.1016/S0890-5401(03)00139-1

14. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Proceedings of the 13th International Conference on Computer Aided Verification.
p. 324–336. CAV ’01, Springer-Verlag (2001)

15. Floyd, R.W.: Syntactic Analysis and Operator Precedence. JACM 10(3), 316–333
(1963). https://doi.org/10.1145/321172.321179

16. Gabow, H.N.: Path-based depth-first search for strong and biconnected
components. Information Processing Letters 74(3), 107–114 (2000).
https://doi.org/10.1016/S0020-0190(00)00051-X

17. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York
(2008). https://doi.org/10.1007/978-0-387-68954-8

18. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
19. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engi-

neering 23(5), 279–295 (1997). https://doi.org/10.1109/32.588521

https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1007/978-3-030-81688-9_18
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1145/321172.321179
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1109/32.588521

Verification of Programs with Exceptions through OPA 19

20. Jensen, T., Le Metayer, D., Thorn, T.: Verification of control flow based security
properties. In: Proc. ’99 IEEE Symp. on Security and Privacy. pp. 89–103 (1999).
https://doi.org/10.1109/SECPRI.1999.766902

21. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped. http://www2.informatik.
uni-stuttgart.de/fmi/szs/tools/moped/

22. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: Their automata-theoretic and logic characterization. SIAM J. Comput.
44(4), 1026–1088 (2015). https://doi.org/10.1137/140978818

23. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: Theoret-
ical and practical benefits. Computer Science Review 27, 61–87 (2018).
https://doi.org/10.1016/j.cosrev.2017.12.001

24. Meyer, B.: Attached types and their application to three open problems of object-
oriented programming. In: ECOOP 2005 - Object-Oriented Programming. pp. 1–
32. Springer (2005)

https://doi.org/10.1109/SECPRI.1999.766902
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1137/140978818
https://doi.org/10.1016/j.cosrev.2017.12.001

	Verification of Programs with Exceptions through Operator Precedence Automata
	Introduction
	Background: Operator Precedence Languages
	Background: Precedence Oriented Temporal Logic
	Model Checking OPA
	Modeling Procedural Programs
	Experiments
	Discussion

	Conclusions

