
Architecture-aware Precision Tuning with Multiple Number
Representation Systems

Daniele Cattaneo∗, Michele Chiari∗, Nicola Fossati∗, Stefano Cherubin†, Giovanni Agosta∗
∗DEIB, Politecnico di Milano, Milan, Italy. Email: name.surname@polimi.it

†School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom. Email: s.cherubin@napier.ac.uk

Abstract—Precision tuning trades accuracy for speed and energy
savings, usually by reducing the data width, or by switching from floating
point to fixed point representations. However, comparing the precision
across different representations is a difficult task. We present a metric
that enables this comparison, and employ it to build a methodology based
on Integer Linear Programming for tuning the data type selection. We
apply the proposed metric and methodology to a range of processors,
demonstrating an improvement in performance (up to 9×) with a very
limited precision loss (<2.8% for 90% of the benchmarks) on the
PolyBench benchmark suite.

I. INTRODUCTION

Reducing energy consumption is a key challenge for most com-
puting devices, particularly for embedded and mobile systems that
cannot rely on a steady power supply. Error-tolerant applications
enable a trade-off between computation accuracy, performance, and
energy [1], which can be exploited via Approximate Computing
techniques to achieve major performance and energy gains. Only the
minimum accuracy needed for the application is preserved. Among
the possible Approximate Computing techniques, Precision Tuning
aims to modify the computation accuracy by changing the data
types involved. For Precision Tuning to actually produce benefits,
the selection of the data type must be carefully performed for each
statement, limiting the number of cast operations involved while
optimizing the data size. This non-trivial task is usually performed
manually by embedded systems programmers, and in general, by
software developers that need to achieve high performance with
limited resources. Since this operation is error-prone and tedious —
especially when large codebases are involved — significant research
effort has been spent over recent years to build compiler-based tools
to support or entirely replace the programmer effort [2], [3]. The
main limitations of current approaches include their scalability with
respect to the numeric representations allowed in the output. In
particular, most tools only deal with (a subset of) IEEE-754 standard
floating point data types [4]. Beyond the mere technical difficulties
of performing the floating-to-fixed-point conversion, which have been
addressed by modern compilers [3], [5], a key methodological issue
remains unsolved – how to compare the expressive power of different
numeric representations of real numbers, and their suitability to a
given use case.

A. Main Contribution

This paper provides the following main contributions: 1) we
present the Integer Equivalent Bit Width (IEBW), a new metric to
compare floating point and fixed point representations; 2) we provide
LUIS (LLVM-based precision tuning through ILP for mixed number
systems), a new precision tuning methodology which exploits this
metric, and describe its implementation based on Integer Linear
Programming (ILP) model solving. We implemented our approach
into an existing tool, TAFFO1 [6], [7], as a sequence of LLVM
optimization passes.

1https://github.com/HEAPLab/TAFFO

Exploiting these contributions, we demonstrate on the large, well-
known PolyBench/C [8] benchmark suite that the precision can be
automatically tuned to achieve speedups even in general-purpose
architectures — where floating point arithmetics are efficiently im-
plemented in hardware — while preserving precision. Furthermore,
we demonstrate that the compilation overhead imposed by the ILP
solver, which scales unfavorably with the size of the code, is less
than 3.25× for the Polybench/C kernels, and on average 2.10×.

B. Organization of the Paper
The rest of this paper is organized as follows. In section II, we

introduce the problem of compiler-based mixed-precision tuning and
related works. In section III, we introduce the IEBW metric, while
in section IV we introduce the LUIS methodology. In section V, we
provide an experimental assessment of its impact, and, finally, in
section VI we draw conclusions and highlight future research lines.

II. BACKGROUND

In general, compiler-based approaches to mixed-precision tuning
exploit the similarities between conventional compiler analyses and
transformations, and the code manipulation that needs to be applied
to correctly change data types in a program. Indeed, this kind of
approach relies on the compiler infrastructure to manipulate both
the instructions, and the metadata attached to them such as profiling
information or domain knowledge input from the programmer. In
this paper, we assume the user annotates the source code by spec-
ifying the expected dynamic range of values an input variable can
assume. This information can either be inserted by a human or by a
data pre-processing routine. Alternatively, the same result could be
achieved via dynamic code profiling [3]. The compiler infrastructure
later propagates this information through the appropriate data flow
equation system.

A subsequent stage decides which data type should be used for
each intermediate value during the computation, and this is where we
position the usage of the LUIS methodology. Tools in the state-of-the-
art mostly aim to minimize the data size, which is a quite successful
approach whenever only floating point data types are considered. If
we want to enable a mix with other numeric representations, such
as fixed point ones, the tools presented so far apply a trial and
error approach, or similar dynamic analyses [3]. A notable exception
is the Daisy compiler [9] that uses the dReal [10] SMT solver to
verify the list constraints specified by the user with a contract-based-
programming approach. Instead, the approach used in TAFFO exploits
a peep-hole greedy optimization that aims to minimize the error in
each individual operation within a specified data size. It is worth
noting that Daisy operates as a source-to-source compiler. While this
approach may be easier to implement, it makes it difficult to support
multiple source languages and may prevent useful information from
the source code from reaching the target-dependent stages of the
compilation.

Many analysis tools do not go beyond the data type decision step,
and simply provide the user with a suggestion on which data type to
use in their source code, whereas the so-called precision tuning tools
actually perform the type conversion task and compile a tuned version978-1-6654-3274-0/21/$31.00 ©2021 IEEE

https://github.com/HEAPLab/TAFFO

of the program. TAFFO is one of the latter kind. The conversion task
is typically performed via pattern-based code substitution, with some
exceptions to handle inter-procedural precision tuning properly.

III. COMPARING FLOATING POINT AND FIXED POINT WITH THE
INTEGER EQUIVALENT BIT WIDTH METRIC

To optimize the accuracy of the transformed program, it is essential
to be able to compare the accuracy of different numeric repre-
sentations. Unfortunately, different classes of representations have
different, often incomparable metrics to assess their precision. For
example, the precision of fixed point formats depends on the number
of fractional bits, which is a measure of absolute error. On the other
hand, in floating point representations, the precision depends on the
size of the mantissa which is actually a measure of relative error.

To allow a fair comparison of precision capabilities across different
numeric representations, we define a new measurement unit.

Definition 1 (IEBW of a number): The Integer Equivalent Bit Width
(IEBW) for a number x ∈ R expressed in a representation R where ε
is the smallest number for which R(x + ε) 6= R(x) or R(x− ε) 6=
R(x) is defined as:

IEBWR(x) = −blog2 εc

Informally, IEBWR(x) is the minimum number of fractional bits
needed by a fixed point representation to represent x with the same
precision as its original representation R.

As a proof sketch, notice that no finite representation exists for
all numbers in R. Therefore, there must be an ε that quantifies the
distance between the representation of x, and the closest representable
number larger or smaller than x. Hence, it is possible to define the
IEBW for every choice of R and x.

Definition 2 (IEBW of a variable): The IEBW of a program variable
v exploiting representation R and which can take values in the inter-
val [l, u] is defined as: IEBWR(v) = max{IEBWR(x) | x ∈ [l, u]}.

In the following, we define the IEBW for the most common numeric
representations.

Definition 3 (IEBW of a floating point representation): Let x 6= ±0
be a finite number represented in a binary floating point representation
with precision p and maximum exponent E. We define its IEBW as

IEBWfloat(p,E)(x) = p− p̂− ev,

where ev = min(blog2 xc, E) is the exponent of x and p̂ is 1 if
x ≤ 2−E+1, and 0 otherwise.

Notice that for IEEE-754 floating point representations [4], the
IEBW grows inversely proportional to the absolute value of the
number being represented. IEBW is negative whenever the unit in
the last place (ULP) is greater than 1, and no fractional digits can be
represented. This metric is not defined for ±0, ±∞, and NaN.

Table I reports the values needed to compute the IEBW for the
most common floating point representations. In particular, binary32,
binary64, and binary128 refer to the IEEE-754 basic formats [4];
binary16 and binary256 refer to the IEEE-754 binary interchange
formats; bfloat16 — also known as binary16alt [11] — belongs to
the IEEE-754 extendable precision formats.

TABLE I: Values of precision (p) and maximum exponent (E) for
the most popular representations defined by IEEE-754 [4].

Format p E

IEEE-754 binary16 11 15
IEEE-754 binary32 24 127
IEEE-754 binary64 53 1023
IEEE-754 binary128 113 16383
IEEE-754 binary256 237 262143
IEEE-754 extendable “bfloat16” 8 127

TAFFO

VRA

LUIS Type

Allocation

Clang

Program

Model

Solver

Original

Program

Instruction

Benchmark

TAFFO

Conversion

Tuned

Program

Compiler

Target Machine

Fig. 1: Compilation pipeline of LUIS, implemented by exploiting the
TAFFO framework. The components specific to LUIS are represented
by the highlighted boxes in the image.

The IEBW for fixed point representations is defined as follows.
Definition 4 (IEBW of a fixed point representation): Let x be a

number in an unsigned fixed point representation of width w > 0,
fractional bits f < w, and w − f integer bits. Then, its IEBW is
defined as

IEBWfix(w,f)(x) = f

The principle behind the IEBW is general enough to support its
definition for a wide range of different systems. However, space
constraints prevent us from providing a full definition for all systems
proposed in the literature. As an example, we show the generality
of the IEBW by defining it for the Posit [12] system, which is well-
known and has a roadmap of adoption in commercial products [13].

Definition 5 (IEBW of a Posit number): Let x 6= 0 be a number in
Posit representation, of width w, maximum exponent size es , expo-
nent ex, regime kx and number of fractional bits nfx < w− 3− es .
We define its IEBW as:

IEBWposit(w,es)(x) = nfx − (2es · kx + ex)

We refer the reader to [12] for a thorough definition of how to derive
ex, kx and nfx from x.

IV. THE LUIS METHODOLOGY

Based on the IEBW metric, we present LUIS, a methodology for
precision tuning of application kernels. To do so, we start from the
kernel’s LLVM-IR representation. Through its analysis, we build an
ILP model of the precision profile of the kernel, which is then solved
to choose among all possible combinations of variable data types,
taking into account both accuracy and performance.

We show the detailed compilation pipeline of LUIS in Figure 1.
The program, as transformed in LLVM-IR by CLANG, is fed into
a Value Range Analysis (VRA) LLVM pass, which analyzes it to
statically propagate user annotations to value ranges describing all
the variables in the program. From this piece of information, the
LUIS Data Type Allocation pass represents the precision of each
computation in terms of the IEBW metric, defined in Section III, by
computing it from the value ranges of variables. Loss of precision
is penalized by maximizing the number of correct fractional bits
for all operations. Upon that, LUIS constructs the ILP model,
whose parameters include target hardware-specific characterization
data. This model also considers the execution time of mathematical
operations and the overhead of the type cast operations inserted when
heterogeneous data types are selected. To build a reliable model,
the target architecture is benchmarked to measure such operations’
execution time using every allowed data type. The benchmark needs
to be run only once per target and is completely independent from the
program being tuned. Finally, LUIS uses the solution of the model
to change the data types in the program.

While our solution takes advantage of TAFFO for performing the
Value Range Analysis and the modifications to the program required

to change the data types, these components can be replaced by any
other implementation found in the state-of-the-art.

In the rest of this section, we provide a precise definition of the
LUIS ILP model.

A. ILP Model of the Precision Profile of the Code

The model is built reflecting the LLVM-IR representation of the
program. LLVM-IR is a static single assignment form, in which a
virtual register is assigned to each operation. In the following, we
denote as V the set of virtual registers, and as T the set of types
each of them can be implemented with. Types in T can be any of
the floating point formats of Table I, or any fixed point format of
a given width (the amount of fractional bits is explicitly taken into
account by the model). Tfix ⊆ T is the set of available fixed point
types. Each register v ∈ V stores the result of an operation, which
we denote as op(v). If register s ∈ V corresponds to a sum a + b,
a, b ∈ V , then we say that a and b are used by s, and (a, s) is a use
of a in s. U ⊆ V × V is the set of all such uses in a program.

The data type assigned to any floating point register a ∈ V is
modeled by a binary variable xa,t for each supported data type
t ∈ T . E.g., if in the solution xa,binary32 = 1, then the binary32
floating point format will be assigned to variable a. Only one of these
variables must be active at once, which is enforced by constraints
such as

∑
t∈T xa,t = 1.

For any fixed point format f ∈ Tfix an additional integer variable
za,f contains the amount of fractional bits for a, if type f is chosen
for it. Such variable is constrained by the inequalities za,f > 0, and:

za,f ≤ fix-max(a, f), za,f ≤Mxa,f

where M is a large enough constant, and fix-max(a, f) is the
maximum number of fractional bits that can be assigned to a without
it overflowing, according to its value range and to the width of f .

More constraints are defined to model the peculiarities of the
LLVM-IR. For example, in a sum a+ b the two operands must be of
the same type. Therefore, for each data type t ∈ T , the constraint
xa,t = xb,t is added.

The model takes into account the execution time of each operation
by introducing the following term in the objective function:

Ex =
∑
v∈V

∑
t∈T

xv,t · op-time(op(v), t),

where op-time(op(v), t) is the expected execution time of the
operation op(v) computed with type t, as obtained from benchmarks.

The model also keeps track of the slowdown caused by the
insertion of type casts. For every register use, a virtual cast is inserted.
Such casts have a non-zero weight if the used register and its user are
of different types. For example, let (a, s) ∈ U be the use of variable
a in a sum operation s. Then, for each possible pair of different types
t, t′ ∈ T , we add constraints of the form

(xa,t + xs,t′) ≤ y(a,t,s,t′) + 1

If, e.g., a fixed point type with a width of 32 bits is chosen for a
and the binary32 type for s, then binary variable y(a,fix32 ,s,binary32)

will be set to 1. Thus, the overall performance penalty of type casts
is

C =
∑

(a,b)∈U

∑
t,t′∈T
t 6=t′

y(a,t,b,t′) · op-time(castt, t
′),

where op-time(castt, t
′) is the expected time of a cast from type

t to t′. Casts between fixed point formats f of the same width but
different amounts of fractional bits are considered by adding, for each
use (a, b) ∈ U , the constraints:

za,f − zb,f < My(a,f,b,f), zb,f − za,f < My′(a,f,b,f).

Their performance penalty is:

Cfix =
∑

f∈Tfix

∑
(a,b)∈U

(y(a,f,b,f) + y′(a,f,b,f)) · op-time(castf , f).

The model minimizes the loss in accuracy of the computations by
maximizing their overall precision, expressed as the sum of the IEBW
of all virtual registers:

Err =
∑
v∈V

∑
t∈T

xv,t · IEBWt(v).

If t is a fixed point type, by applying the definition of IEBW of a
variable (Definition 2) to Definition 4 it follows that IEBWt(v) = zv,t.
If t is floating point, through similar application of Definitions 2 and
3, it follows that IEBWt(v) is a constant depending on the value range
of the virtual register.

B. Cost function

The model’s solution is obtained by minimizing the following
objective function:

min[W1 · (Êx + Ĉ + Ĉfix)−W2 · Êrr]

where Êx , Ĉ, Ĉfix and Êrr are resp. Ex , C, Cfix and Err from
Section IV-A, but normalized against their maximum possible value,
to keep them comparable. Since Êrr is preceded by a minus sign,
its value is actually maximized.

The values of weights W1 and W2 can be chosen to fine-tune the
trade-off between computation time and precision. If W1 > W2, the
cost function prioritizes a faster choice of program variable types
over the computation accuracy, and vice versa if W2 > W1.

The solution computed by the ILP solver is then implemented by a
subsequent pass, which converts all virtual register types and inserts
type casts accordingly.

C. Platform Characterization

As previously stated, the op-time function is employed by the
model to describe the compilation target machine’s performance
characteristics. In the proposed implementation of our approach,
these functions’ values are pre-computed before the compilation by
executing targeted micro-benchmarks.

More in detail, we exploit an instruction-level micro-benchmark
which employs the appropriate operating system interfaces to measure
the execution time of 128 iterations of each considered operation or
cast. Then, the execution times are normalized to a synthetic metric
through the following method.

Let O be the set of all operations and casts, and To,t the measured
execution time for operation o ∈ O in data type t ∈ T . If o = castt,
then Tcastt,t′ is the measured execution time for a cast from type t
to type t′. Function op-time is defined as:

op-time(o, t) = To,t/min{To′,t′ | o′ ∈ O, t′ ∈ T }.

V. EXPERIMENTAL ANALYSIS

To evaluate the effectiveness of our contribution, we shall measure
both the extent of the speedup-error tradeoff, and its variations
depending on the ILP model’s parameters.

The impact of the platform characterization parameters of the
model is assessed by employing four different hardware platforms
during the experiments. Since exhaustively evaluating other user-
controlled parameters is unfeasible because of the number of possible
options, this aspect is considered by defining a finite amount of
parameter presets.

Finally, the model construction algorithm is verified by performing
the experiments on several different computational kernels from the
well-known industry-standard benchmark suite PolyBench/C.

TABLE II: Hardware characterization on elementary LLVM math-
ematical operations on the machines used during the experiments.
Values are normalized to the fastest operation for the same machine.

op-time(o, t)

o t Stm32 Raspberry Intel AMD

add fix 1.24 1.30 1.05 1.35
add float 2.33 1.81 1.03 1.33
add double 2.72 2.15 1.39 2.63
sub fix 1.24 1.30 1.05 1.35
sub float 2.33 1.81 1.03 1.33
sub double 2.72 2.15 1.39 2.63
mul fix 1.62 2.04 1.36 2.63
mul float 2.65 3.35 1.83 4.43
mul double 4.02 4.14 1.56 4.58
div fix 5.30 3.45 3.98 15.14
div float 5.60 4.13 2.03 6.17
div double 18.33 5.68 2.21 6.57
rem fix 1.39 2.20 1.59 9.51
rem float 27.01 15.18 54.01 13.59
rem double 152.35 92.15 387.09 74.30

castfix fix 1.00 1.13 1.00 1.00
castfix float 7.63 5.25 3.08 7.35
castfix double 20.89 6.77 3.36 8.37
castfloat fix 4.28 4.47 2.87 5.41
castfloat double 1.63 1.00 1.18 1.67
castdouble fix 5.65 5.53 2.72 6.09
castdouble float 1.79 5.91 1.17 1.65

A. Methodology
In this section, we outline the environment in which the ex-

periments were conducted, with respect to three different variables
involved in our proposal.

First, we describe the benchmarks we use and how our solution’s
software implementation was configured. Then, we enter into details
regarding the hardware used for the tests and the measures and
metrics we used for quantifying the results of the experiments.

1) Benchmark Selection: We employed the benchmarks from the
PolyBench/C test suite, version 4.2.1. This benchmark suite consists
of several programs written in C that implement a wide variety
of kernels used in various applications. For example, it includes
benchmarks representative of signal processing applications, such as
the Fourier transform (fdtd-2d), the Deriche filter (deriche), and
so on. Machine learning, data mining, and other applications relying
on linear algebra are also represented.

No modifications were made to the benchmarks, except for the
addition of the annotations required by TAFFO.

2) Hardware Setup: In our evaluation, we employ four different
machines with different hardware architectures.

The first machine, named Stm32, is an STM3220G-EVAL evalu-
ation board equipped with a 120 MHz CortexM3 ARM processor.
It also features 1 MB of Flash, 128 kB of internal RAM and ad-
ditionally 2 MB of SRAM. This machine represents medium-range
microcontrollers with limited RAM and clock frequency. It does not
support floating point arithmetic in hardware.

The Raspberry machine is a Raspberry Pi Model B Rev 2 single
board computer featuring a BCM2835 system-on-a-chip (SOC) with
an ARMv6 CPU core supporting single precision floating point
hardware instructions. Its CPU runs at 800 MHz, and it also features
512 MB of RAM, a small part of which is reserved for the graphical
processor. This machine represents mid-to-low range mobile devices,
as the BCM2835 SOC was designed for this use case. However, it
can be used as a conventional desktop PC.

The Intel machine is a desktop computer featuring an Intel Pentium
E5300 processor running at 2.6 GHz, with 4 GB of RAM. This
machine represents platforms used in offices or for recreation.

The AMD machine is a NUMA node with four AMD Opteron 8435
CPUs, based on the K10 microarchitecture, running at 2.6 GHz and

TABLE III: Model parameters used for each configuration employed
during the experiments.

Configuration W1 W2

Fast 1000 1
Balanced 50 50
Precise 1 1000

with a total of 128 GB DDR2 RAM. It represents the hardware com-
monly used as computational nodes in high-performance computing.

The execution time of each instruction micro-benchmark
used for platform characterization is measured through the
clock_gettime POSIX API — invoked with the parameter
CLOCK_PROCESS_CPUTIME_ID — on the Intel, AMD and Rasp-
berry machines. Instead, on Stm32, the execution times were mea-
sured by exploiting the CYCCNT debug register. Such register in-
crements by one on each cycle of the processor clock [14]. The
characterization data resulting from the micro-benchmarks is shown
in Table II. Note how rem_float and rem_double have very
high costs because they involve a call to the mathematical library.

3) Software Setup: The operating system used in the Raspberry
and Intel machines is the Arch Linux distribution, based on the
Linux kernel version 5.4. In particular, on the Raspberry machine,
we employed a variant thereof, named Arch Linux for ARM. The
AMD machine runs Linux Ubuntu server 18.04. Finally, on the Stm32
machine, the benchmarks could run unmodified through the usage of
the MIOSIX2 embedded real-time operating system.

The compiler toolchain in our proof-of-concept software, and on
which all compilation tasks were performed, is LLVM version 8.0.1.
All benchmarks were compiled on the AMD machine, regardless of
the target machine for execution. In particular, the appropriate cross-
compiling toolchains were exploited for the Raspberry and Stm32
machines.

Several ILP solver configuration presets were used during the
experiments. They are defined depending on the two parameters W1

and W2 discussed in Section IV-B. Table III shows the values of
W1 and W2 corresponding to each configuration. The ILP solver
employed in our implementation is an off-the-shelf solution provided
by the Python library Google OR-Tools [15], version 7.6.7691.

4) Evaluation Metrics: To evaluate the performance of the ILP
solver, the benchmarks were instrumented to collect the execution
time and the computation results. From this experimental data, we
computed the speedup and the Mean Percentage Error (MPE).

Let us represent the execution time of the unmodified benchmark
with t and the execution time of the benchmark optimized by the
ILP model as t′. The speedup S (and its reciprocal slowdown Ŝ)
obtained through the ILP model is therefore defined as follows.

S = 100

(
t

t′
− 1

)
Ŝ = 100

(
t′

t
− 1

)
To define the MPE, let us represent the output of a benchmark

as a vector O = {o1, o2, ...on}. If O is the vector of outputs of
the unmodified benchmark, and if O′ is the vector of outputs of
the benchmark optimized by employing the ILP model, the MPE is
defined as follows.

MPE =
100

n

n∑
i=1

∣∣∣∣oi − o′i
oi

∣∣∣∣
Additionally, we collected the compilation time and the number of

instructions of which the ILP model changed the type.

Speedup [%]

Mean Percentage Error [%]

2mm
3mm

adi
atax
bicg

cholesky
corr

covariance
deriche
doitgen
durbin

fdtd-2d
floyd-warshall

gemm
gemmver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d

lu
ludcmp

mvt
nussinov
seidel-2d

symm
syr2k
syrk

trisolv
trmm

4.6

3.3

0.6

5.2

6.4

5.6

60.1

2.8

0.1

4.7

5.8

1.3

16.6

4.6

7.3

6.5

-7.5

1.6

-0.6

1.8

5.6

0.6

7.0

-5.5

2.4

1.5

2.1

4.0

7.0

5.0

16.3

16.5

42.8

73.2

72.8

8.2

12.0

17.2

4.0

17.8

4.7

5.7

-22.2

-7.4

36.5

110.1

-0.0

2.0

1.6

5.2

7.8

5.5

62.2

-42.4

40.1

16.6

16.8

23.1

78.3

27.1

140.8

177.6

165.8

231.6

147.4

15.9

2.3

79.2

120.2

94.7

303.3

27.7

344.0

166.5

133.7

409.7

-8.9

859.5

636.3

758.2

12.3

29.6

112.2

229.3

583.4

432.3

576.9

385.0

156.2

355.3

355.2

334.0

486.6

393.2

411.4

277.3

195.2

327.8

174.9

254.3

291.3

620.9

282.1

158.8

399.6

420.4

287.8

823.8

594.9

725.4

304.0

272.1

308.7

224.1

588.0

434.0

579.8

400.1

346.9

352.1

Stm32
0.0

-0.3

0.2

0.0

0.5

-0.9

0.1

0.3

-19.7

-1.0

-0.6

-1.6

-0.1

0.1

-1.6

-59.5

1.5

-1.5

0.1

-0.5

0.2

0.8

0.0

-0.1

-13.1

0.5

0.1

0.3

-0.0

-0.3

-0.0

-0.3

0.1

-0.2

0.6

-1.0

0.4

0.6

-22.4

-1.3

0.4

-1.6

-0.1

0.2

-1.1

-59.6

1.6

-1.4

0.1

-0.8

0.5

1.1

0.0

0.0

-13.1

0.4

0.3

0.4

-0.0

-17.8

102.4

53.1

-55.7

43.3

21.9

62.6

83.4

94.6

60.0

42.9

21.6

98.4

47.7

61.5

64.5

-0.0

137.4

62.9

92.4

71.5

74.7

83.9

145.6

118.5

140.6

111.7

65.4

180.1

130.6

150.2

96.8

95.0

-67.4

90.6

87.1

78.4

104.2

98.1

63.0

68.7

16.1

88.1

46.9

75.4

60.7

1.5

144.3

45.0

80.0

88.5

88.7

83.8

119.0

112.9

140.5

112.1

144.2

186.9

101.9

150.1

Raspberry
0.0

-0.5

-0.6

-0.9

-1.1

-1.3

4.0

-1.0

-35.7

2.8

21.6

-5.7

2.3

1.5

-12.7

0.3

-43.7

-1.4

-14.1

-1.3

-4.3

1.8

2.3

-1.7

-1.5

0.3

0.5

-1.9

-1.5

-0.0

-4.2

-1.7

0.1

3.5

-3.5

-0.5

6.5

-0.6

-33.6

1.2

29.3

-0.8

-16.8

0.4

0.1

7.6

-44.6

-1.0

-14.1

-1.2

-3.8

4.4

-15.6

12.6

-2.1

-0.4

-2.0

1.5

9.2

1.8

-20.1

4.1

19.9

140.7

-16.8

-0.8

87.6

72.0

30.9

17.0

28.7

30.1

13.4

1.4

166.7

150.4

-44.9

96.7

-3.6

9.4

213.9

258.3

155.0

13.9

23.3

-2.8

-2.3

-1.2

6.0

0.3

-39.9

-19.8

-57.0

62.3

100.9

79.5

18.1

11.3

45.1

-24.3

-27.4

-14.5

111.5

-53.8

63.7

86.0

-32.9

95.8

-49.0

-35.5

64.3

88.7

121.5

-20.2

53.2

5.6

-36.1

-40.0

123.7

-12.0

Intel
-3.6

-0.7

5.6

0.6

-0.3

-0.2

2.1

-1.1

-29.9

0.1

-1.3

4.4

1.5

-4.4

0.1

31.2

-31.3

-0.2

-6.9

0.3

-0.3

0.1

-1.1

-0.1

-27.1

-2.2

3.2

5.1

0.4

-0.8

-2.3

-0.5

5.9

-0.3

-1.3

-0.2

1.8

0.2

-32.7

-0.6

-1.3

2.7

3.2

-0.9

-1.8

26.7

-32.1

-0.2

-6.9

-1.1

0.2

-0.0

2.0

-44.8

-27.1

-1.1

3.5

0.6

1.4

-3.7

7.0

-5.4

15.1

90.2

81.1

76.2

18.6

14.7

72.7

3.6

20.2

162.1

3.3

-56.4

79.3

170.0

-6.7

23.2

-4.1

11.6

74.7

70.9

75.7

15.7

-17.0

2.7

-41.4

60.3

133.1

16.5

-6.3

-9.3

-71.6

81.4

116.0

30.6

12.4

-0.4

101.0

19.3

-28.2

48.1

-30.1

-55.4

51.6

162.9

-27.6

18.9

-41.6

-34.3

29.3

34.0

117.3

75.5

76.9

-0.1

-22.5

-5.9

140.0

-6.9

AMD

P
re

ci
se

B
al

an
ce

d

Fa
st

TA
FF

O

2mm
3mm

adi
atax
bicg

cholesky
corr

covariance
deriche
doitgen
durbin

fdtd-2d
floyd-warshall

gemm
gemmver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d

lu
ludcmp

mvt
nussinov
seidel-2d

symm
syr2k
syrk

trisolv
trmm

0.00

0.00

0.00

0.00

0.00

2.5e-6

9.8e-2

0.00

9.8e-5

0.00

6.8e-5

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2.5e-6

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2.0e-6

2.0e-6

2.2e-5

2.3e-7

1.7e-6

2.5e-6

9.8e-2

3.3e-6

1.2e-4

1.0e-6

9.3e-5

5.3e-5

0.00

9.7e-2

6.6e-7

1.2e-6

106.

0.00

1.5e-7

2.5e-5

2.5e-6

9.0e-3

4.8e-7

0.00

3.9e-6

3.3e-7

1.9e-6

1.8e-6

5.7e-6

1.5e-6

5.4e-3

0.216

2.1e-4

1.4e-3

7.6e-5

4.5e-2

0.493

9.9e-6

7.5e-2

1.2e-5

5.3e-3

1.1e-3

0.00

0.101

1.4e-4

1.0e-4

175.

0.00

2.2e-4

3.8e-3

1.8e-4

1.5e-3

5.6e-5

0.00

1.3e-2

1.2e-2

2.9e-5

0.233

4.2e-4

1.8e-4

5.4e-3

0.257

2.1e-4

1.4e-3

6.1e-5

4.5e-2

0.192

4.9e-2

8.2e-3

1.4e-5

5.3e-3

1.1e-3

0.00

0.101

1.8e-3

7.0e-5

101.

0.00

2.2e-4

4.6e-3

1.7e-4

1.2e-3

5.3e-5

0.00

1.3e-2

1.2e-2

2.9e-5

0.233

2.0e-4

1.4e-4

P
re

ci
se

B
al

an
ce

d

Fa
st

TA
FF

O

0.00

0.00

0.00

0.00

0.00

0.00

1.7e-3

0.00

1.0e-4

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

121.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.4e-8

0.00

0.00

1.7e-3

1.0e-6

7.9e-2

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

121.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.3e-3

0.220

3.5e-2

1.3e-3

4.3e-5

9.5e-4

5.2e-3

2.9e-5

7.9e-2

1.9e-5

10.6

3.0e-4

0.00

0.120

1.1e-4

1.2e-4

116.

0.00

2.2e-4

9.7e-4

9.1e-4

2.4e-2

1.0e-4

0.00

7.4e-3

1.8e-2

6.0e-5

0.271

9.0e-3

1.8e-4

3.3e-3

0.220

2.9e-2

1.4e-3

7.1e-5

8.4e-2

0.281

1.4e-3

8.0e-3

1.6e-5

10.6

0.562

0.00

0.120

2.3e-4

8.0e-5

6.7e3

0.00

2.2e-4

9.4e-4

1.8e-5

2.4e-2

7.8e-5

0.00

7.4e-3

1.8e-2

5.7e-5

0.271

1.9e-4

1.5e-4

P
re

ci
se

B
al

an
ce

d

Fa
st

TA
FF

O

0.00

0.00

0.00

0.00

0.00

0.00

1.7e-3

0.00

1.0e-4

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

121.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.7e-3

0.00

1.0e-4

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

121.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.7e-5

2.2e-3

2.5e-5

0.00

3.1e-6

1.7e-3

3.2e-5

1.3e-4

8.4e-6

9.9e-3

1.7e-4

0.00

0.00

2.2e-5

1.1e-5

121.

0.00

3.3e-4

1.4e-4

8.3e-4

2.4e-2

1.8e-5

0.00

4.8e-6

0.00

0.00

0.00

0.00

0.00

3.3e-3

0.220

2.9e-2

1.4e-3

7.1e-5

8.4e-2

0.281

1.4e-3

8.0e-3

1.6e-5

10.6

126.

0.00

0.120

2.3e-4

8.0e-5

6.7e3

0.00

2.2e-4

9.4e-4

1.8e-5

2.4e-2

7.8e-5

0.00

7.4e-3

1.8e-2

5.7e-5

0.271

1.9e-4

1.5e-4

P
re

ci
se

B
al

an
ce

d

Fa
st

TA
FF

O

0.00

0.00

0.00

0.00

0.00

3.1e-6

1.7e-3

0.00

1.0e-4

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.2e-6

4.4e-5

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.4e-8

0.00

3.1e-6

1.7e-3

0.00

1.1e-4

0.00

2.6e-3

0.00

0.00

0.00

0.00

0.00

121.

0.00

0.00

0.00

3.2e-6

3.7e-3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.7e-5

1.7e-5

2.2e-3

2.5e-5

2.0e-5

8.4e-4

1.7e-3

3.2e-5

1.3e-4

8.4e-6

9.9e-3

1.7e-4

0.00

0.120

2.2e-5

1.1e-5

121.

0.00

3.3e-4

1.4e-4

8.3e-4

2.4e-2

1.8e-5

0.00

4.8e-6

1.8e-2

9.6e-6

9.8e-6

9.2e-3

1.2e-5

3.3e-3

0.220

2.9e-2

1.4e-3

7.1e-5

8.4e-2

0.281

1.4e-3

8.0e-3

1.6e-5

10.6

126.

0.00

0.120

2.3e-4

8.0e-5

6.7e3

0.00

2.2e-4

9.4e-4

1.8e-5

2.4e-2

7.8e-5

0.00

7.4e-3

1.8e-2

5.7e-5

0.271

1.9e-4

1.5e-4

Fig. 2: Speedup and MPE metrics for the benchmarks in PolyBench-C, as optimized by the ILP model with up to 3 different configurations
(Precise, Balanced, Fast), and as optimized by the existing greedy data type allocation algorithm in TAFFO.

TABLE IV: Percentage of benchmarks where, when varying the
model parameters, the speedup (Time) and the error are ordered in
the same way as the W1 and −W2 parameters, respectively.

Machine Time [%] Error [%]

Stm32 86.7 96.7
Raspberry 93.3 100
Intel 86.7 100
AMD 90.0 100

TABLE V: Fraction of instructions allocated to each data type by
the ILP model for the Stm32 machine, averaged over all benchmarks.

Instruction Mix [%]
Fixed Point binary32 binary64

Precise 0.2 2.5 97.3
Balanced 1.5 20.8 77.6
Fast 71.6 27.0 1.4

B. Experimental Results

In Figure 2, we show the Speedup and MPE metrics derived from
the experiments. In Table IV, we report a summary of the results as
the percentage of benchmarks where the experimental data correctly
reflects the variation in the parameters. In other words, the table
shows the fraction of benchmarks where the configurations, ordered
by either increasing speedup or decreasing error, are ordered in the
same way as by increasing W1 or increasing W2, respectively. Ad-
ditionally, ordering discrepancies are tolerated within a 10% margin.

On all architectures, the variation of parameters is correctly re-
flected in the experimental data for the great majority of benchmarks
employed. In fact, we can see that the Fast configuration achieves
speedups as high as 800%, while the Precise configuration almost
always produces programs that are functionally equivalent to non-
tuned programs (the error is zero, meaning the outputs are exactly the
same). While the gradual increase of the error is similarly reflected
on all machines, the speedups are lower for Intel and AMD, and
occasionally a slowdown is obtained. We believe that this discrepancy
occurs because our ILP model is based on a uniform cost model of
each instruction. This kind of model does not accurately represent
variable costs due to caching, pipelining, and other complex behavior
exhibited by superscalar processors such as those found in the Intel
and AMD machines.

With regards to the error, we observe that the gramschmidt bench-
mark is an outlier. In almost all configurations, and for every machine,
we get very high errors. We believe that this happens because the
kernel implemented in the benchmark (vector orthonormalization
with the Gram-Schmidt process) is not error tolerant in general.
In fact, even small discrepancies in the new basis for the vectors
can cause large differences in the output. These errors are further
amplified by the MPE metric when both the elements of the basis
vector and the normalized vector itself are close to zero.

Another discrepancy we observe is that the greedy algorithm
found in TAFFO occasionally achieves consistently better speedups,
in particular for the Stm32 machine. This is due to the fact that the
aforementioned algorithm does not consider the cascading effect of
error propagation, as it is only a peep-hole optimization. Therefore,
this algorithm overwhelmingly privileges fixed point types, which
results in very high speedups for the Stm32 machine because it does
not have an FPU. Conversely, the new ILP model we propose averts
the pitfall of abusing fixed point types, therefore preventing most of
the slowdowns caused by the standard TAFFO algorithm on the Intel
and AMD platforms.

2http://miosix.org

In Table V, we show the average fraction of instructions allocated
to each data type for the benchmarks optimized by the ILP model
for the Stm32 machine. This metric is also defined as precision mix.
We notice that, as the W2 parameter increases, the precision mix
shifts from higher precision types to lower precision ones. It can also
be observed that the high amount of speedup obtained by the Fast
configuration is reflected in the high portion of instructions employing
fixed point data types. In conclusion, this aspect further underlines
that the approach we propose is capable of balancing precision and
performance as intended.

Finally, we must consider the execution time increase directly
or indirectly caused by the process of building and solving an
ILP model. The compilation time was measured both when using
TAFFO as-is, and when employing LUIS. The minimum compilation
slowdown we measured across all compilations performed was 1.48×
(corresponding to an increase of the compilation time from 0.97 s to
1.45 s), and the maximum slowdown was 3.25× (corresponding to
an increase from 0.66 s to 2.16 s). The average slowdown was 2.10×.
In practice, each kernel is optimized on its own, so these overheads
are representative of real cases, except that an actual application will
be composed of a number of kernels. Thus, the overall slowdown can
be expected to be in the order of 1.5− 3×.

VI. CONCLUSIONS

We presented the IEBW metric for comparing the precision capa-
bilities of different numeric representations. We demonstrated how
IEBW can be successfully exploited to improve the effectiveness of
the precision tuning process by employing it as part of a new ILP
model for mixed precision tuning (LUIS). The experimental campaign
proves that our approach enables speedups up to 9×, while requiring
only less than 3× compilation overhead. Future directions include
the definition of ILP models for more complex processors (e.g.,
superscalar) as well as expanding the platform characterization and
experimental analysis to new architectures (e.g., RISC-V) and data
types (e.g., Posit/Unum). Furthermore, we believe it will be of major
interest to explore the use of different cost functions to maximise
alternative non-functional metrics, such as hardware utilisation or
power saving, in both conventional and reconfigurable architectures.

REFERENCES

[1] T. Moreau, J. San Miguel, M. Wyse, J. Bornholt, A. Alaghi, L. Ceze, N. Enright
Jerger, and A. Sampson, “A taxonomy of general purpose approximate computing
techniques,” IEEE Embed. Syst. Lett., vol. 10, no. 1, pp. 2–5, 2018.

[2] P. Stanley-Marbell et al., “Exploiting errors for efficiency: A survey from circuits
to applications,” ACM Comput. Surv., vol. 53, no. 3, Jun. 2020.

[3] S. Cherubin and G. Agosta, “Tools for reduced precision computation: a survey,”
ACM Comput. Surv., vol. 53, no. 2, Apr 2020.

[4] IEEE Computer Society, “IEEE standard for floating-point arithmetic,” IEEE Std
754-2019 (Revision of IEEE 754-2008), pp. 1–84, 2019.

[5] E. Darulova and V. Kuncak, “Towards a compiler for reals,” ACM Trans. Program.
Lang. Syst., vol. 39, no. 2, pp. 8:1–8:28, Mar. 2017.

[6] S. Cherubin, D. Cattaneo, M. Chiari, A. D. Bello, and G. Agosta, “TAFFO: tuning
assistant for floating to fixed point optimization,” IEEE Embed. Syst. Lett., vol. 12,
no. 1, pp. 5–8, 2020.

[7] S. Cherubin, D. Cattaneo, M. Chiari, and G. Agosta, “Dynamic precision autotun-
ing with TAFFO,” ACM Trans. Archit. Code Optim., vol. 17, no. 2, May 2020.

[8] T. Yuki, “Understanding PolyBench/C 3.2 kernels,” in International workshop on
Polyhedral Compilation Techniques (IMPACT), 2014.

[9] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision optimization with
rewriting,” in Proc. 9th ACM/IEEE International Conference on Cyber-Physical
Systems, ser. ICCPS ’18, 2018, pp. 208–219.

[10] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear theories
over the reals,” in Automated Deduction – CADE-24, 2013, pp. 208–214.

[11] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A transprecision
floating-point platform for ultra-low power computing,” in 2018 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), March 2018, pp. 1051–1056.

[12] J. Gustafson and I. Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, 2017.

[13] European Processor Initiative, “Posit-based ML & DNN Acceleration for
AI in EPI.” [Online]. Available: https://www.european-processor-initiative.eu/
wp-content/uploads/2020/07/EPI-Technology-FS-Posit.pdf

[14] ARM, ARMv7-M Architecture Reference Manual, 2014.
[15] L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available: https:

//developers.google.com/optimization/

http://miosix.org
https://www.european-processor-initiative.eu/wp-content/uploads/2020/07/EPI-Technology-FS-Posit.pdf
https://www.european-processor-initiative.eu/wp-content/uploads/2020/07/EPI-Technology-FS-Posit.pdf
https://developers.google.com/optimization/
https://developers.google.com/optimization/

	Introduction
	Main Contribution
	Organization of the Paper

	Background
	Comparing floating point and fixed point with the Integer Equivalent Bit Width metric
	The LuIs Methodology
	ILP Model of the Precision Profile of the Code
	Cost function
	Platform Characterization

	Experimental Analysis
	Methodology
	Benchmark Selection
	Hardware Setup
	Software Setup
	Evaluation Metrics

	Experimental Results

	Conclusions
	References

