
Model-Checking Structured Context-Free
Languages

Michele Chiari1[0000−0001−7742−9233], Dino Mandrioli1[0000−0002−0945−5947], and
Matteo Pradella1,2[0000−0003−3039−1084]

1 DEIB, Politecnico di Milano, Italy, name.surname@polimi.it
2 IEIIT, Consiglio Nazionale delle Ricerche, Italy

Abstract. The problem of model checking procedural programs has fos-
tered much research towards the definition of temporal logics for rea-
soning on context-free structures. The most notable of such results are
temporal logics on Nested Words, such as CaRet and NWTL. Recently,
the logic OPTL was introduced, based on the class of Operator Prece-
dence Languages (OPL), more powerful than Nested Words. We define
the new OPL-based logic POTL, and provide a model checking proce-
dure for it. POTL improves on NWTL by enabling the formulation of
requirements involving pre/post-conditions, stack inspection, and others
in the presence of exception-like constructs. It improves on OPTL by
being FO-complete, and by expressing more easily stack inspection and
function-local properties. We developed a model checking tool for POTL,
which we experimentally evaluate on some interesting use-cases.

Keywords: Linear Temporal Logic · Operator Precedence Languages
· Model Checking · Visibly Pushdown Languages · Input-Driven Lan-
guages

1 Introduction

Model checking is one of the most successful techniques for the verification of
software programs. It consists in the exhaustive verification of the mathemati-
cal model of a program against a specification of its desired behavior. The kind
of properties that can be proved in this way depends both on the formalism
employed to model the program, and on the one used to express the specifica-
tion. The initial and most classical frameworks consist in the use of operational
formalisms, such as Transition Systems and Finite State Automata (generally
Büchi automata) for the model, and temporal logics such as Linear-time Tem-
poral Logic (LTL), Computation-Tree Logic (CTL) and CTL* for the specifica-
tion [23]. The success of such logics is due to their ease in reasoning about linear
or branching sequences of events over time, by expressing liveness and safety
properties, their conciseness with respect to automata, and the complexity of
their model checking.

In this paper we consider linear-time temporal domains. LTL limits its set of
expressible properties to the First-Order Logic (FOL) definable fragment of reg-
ular languages. This is quite restrictive when compared with the most popular

2 M. Chiari, D. Mandrioli, M. Pradella

abstract models of procedural programs, such as Pushdown Systems, Boolean
Programs [10], and Recursive State Machines [3]. All such stack-based formalisms
show behaviors that are expressible by means of Context-Free Languages (CFL),
rather than regular ones. State and configuration reachability, fair computation
problems, and model checking of regular specifications have been thoroughly
studied for such formalisms [13,29,17,27,39,50,54,3,31,4]. To expand the expres-
sive power of specification languages too, [12,14] augmented LTL with Presburger
arithmetic constraints on the occurrences of states, obtaining a logic capable of
even some context-sensitive specifications, but with only restricted decidable
fragments. [40] introduced model checking of pushdown tree automata specifi-
cations on regular systems, and Dynamic Logic was extended to some limited
classes of CFL [33]. Decision procedures for different kinds of regular constraints
on stack contents have been given in [36,28,18].

A coherent approach came with the introduction of temporal logics based
on Visibly Pushdown Languages (VPL) [7], a.k.a. Input-Driven Languages [46].
Such logics, namely CaRet [6] and its FO-complete successor NWTL [2], model
the execution trace of a procedural program as a Nested Word [8], consisting
in a linear ordering augmented with a one-to-one matching relation between
function calls and returns. They are the first ones featuring temporal modalities
that explicitly refer to the nesting structure of CFL [4]. This enables require-
ment specifications to include Hoare-style pre/post-conditions, stack-inspection
properties, and more. A µ-calculus based on VPL extends model checking to
branching-time semantics in [5], while [16] introduces a temporal logic capturing
the whole class of VPL. Timed extensions of CaRet are given in [15].

VPL too have their limitations. They are more general than Parenthesis Lan-
guages [45], but their matching relation is essentially constrained to be one-to-
one [42]. This hinders their suitability to model processes in which a single event
must be put in relation with multiple ones. Unfortunately, computer programs
often present such behaviors: exceptions, continuations, and context-switches
in real-time operating systems are single events that cause the termination (or
re-instantiation) of multiple functions on the stack.

To reason about such behaviors, temporal logics based on Operator Prece-
dence Languages (OPL) have been proposed [22]. OPL were initially introduced
with the purpose of efficient parsing [30], a field in which they continue to offer
useful applications [11]. They are capable of capturing the syntax of arithmetic
expressions, and other constructs whose context-free structure is not immediately
visible. The generality of the structure of their syntax trees is much greater than
that of VPL, which are strictly included in OPL [24]. Nevertheless, they retain
the same closure properties that make regular languages and VPL suitable for
automata-theoretic model checking: OPL are closed under Boolean operations,
concatenation, Kleene *, and language emptiness and inclusion are decidable
[41]. They have been characterized by means of push-down automata, Monadic
Second-Order Logic and, recently, by an extension of Regular Expressions [41,43].

OPTL [22] is the first linear-time temporal logic for which a model checking
procedure has been given on both finite and ω-words of OPL. It enables reasoning

Model-Checking Structured Context-Free Languages 3

on procedural programs with exceptions, expressing properties about whether a
function can be terminated by an exception, or throw one, and also pre/post-
conditions. NWTL can be translated into OPTL in linear time, thus the latter is
capable of expressing all properties that can be formalized in CaRet and NWTL,
and many more. [22] does not explore OPTL’s expressiveness further, and does
not investigate the practical applicability of their model checking construction.

In this article, we introduce Precedence Oriented Temporal Logic (POTL),
which redefines the syntax and semantics of OPTL to be much closer to the
context-free structure of words. With POTL, it is much easier to navigate a
word’s syntax tree, expressing requirements that are aware of its structure. From
a more theoretical point of view, POTL is FO-complete whereas OPTL is not, so
that CaRet, NWTL, OPTL and POTL constitute a strict hierarchy in terms of
expressive power. Such a theoretical elaboration, however, is technically involved;
thus, for length reasons, it is documented in a companion paper submitted else-
where.

In this paper, instead, we focus on the model-checking application of POTL.
We provide a tableaux-construction procedure for model checking POTL, which
yields nondeterministic automata of size at most singly exponential in the for-
mula’s length, and is thus not asymptotically greater than that of LTL, NWTL
and OPTL. We implemented such a procedure in a tool called POMC, which we
evaluate on several interesting case studies. POMC’s performance is promising:
almost all case studies are verified in seconds and with a reasonable memory
consumption, with very few outliers. Such outliers are inevitable, due to the
exponential complexity of the task.

The related work on tools is not as rich as the theoretical one. Tools and li-
braries such as VPAlib [47], VPAchecker [53], OpenNWA [26] and SymbolicAu-
tomata [25] only implement operations such as union, intersection, universal-
ity/inclusion/emptiness check for Visibly Pushdown or Nested Word Automata,
but have no model checking capabilities. PAL [19] uses nested-word based moni-
tors to express program specifications, and a tool based on blast [35] implements
its runtime monitoring and model checking. PAL follows the paradigm of pro-
gram monitors, and is not—strictly speaking—a temporal logic. PTCaRet [51]
is a past version of CaRet, and its runtime monitoring has been implemented
in JavaMOP [20]. [48,49] describe a tool for model checking programs against
CaRet specifications. Since its purpose is malware detection, it targets program
binaries directly by modeling them as Pushdown Systems. Unfortunately, this
tool does not seem to be available online. To the best of our knowledge, POMC
is the only publicly-available3 tool for model-checking temporal logics capable
of expressing context-free properties.

The paper is organized as follows: we give some background on OPL in Sec-
tion 2, we introduce POTL in Section 3 and its model checking in Section 4, and
we evaluate our prototype model checker in Section 5. Due to space constraints,
we leave all formal proofs to a technical report [21].

3 https://github.com/michiari/POMC

https://github.com/michiari/POMC

4 M. Chiari, D. Mandrioli, M. Pradella

2 Operator Precedence Languages

We assume some familiarity with classical formal language theory concepts
such as context-free grammar, parsing, shift-reduce algorithm, syntax tree (ST)
[32,34]. Operator Precedence Languages (OPL) are usually defined through their
generating grammars [30]; in this paper, however, we characterize them through
their accepting automata [41] which are the natural way for stating equivalence
properties with logic characterization, and for model checking. Readers not fa-
miliar with OPL may refer to [42] for more explanations on the following basic
concepts; an explanatory example is also given at the end of this section.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
6∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {l, .=,m}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the
pair (Σ,M) an operator precedence alphabet. Relations l, .=,m, are respectively
named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the
ending #. If M(a, b) = π, where π ∈ {l, .=,m}, we write a π b. For u, v ∈ Σ+ we
write u π v if u = xa and v = by with a π b. The role of PR is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” m can match more than one “opening” l. Despite their graphical
appearance, PR are not ordering relations.

Definition 1. An operator precedence automaton (OPA) is a tuple A = (Σ,
M,Q, I, F, δ) where: (Σ,M) is an operator precedence alphabet, Q is a finite set
of states (disjoint from Σ), I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the
union of the three disjoint relations δshift ⊆ Q×Σ×Q, δpush ⊆ Q×Σ×Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are—possibly partial—functions.

To define the semantics of OPA, we need some new notations. Letters p, q, pi,

qi, . . . denote states in Q. We use q0
a−→ q1 for (q0, a, q1) ∈ δpush , q0

a
99K q1 for

(q0, a, q1) ∈ δshift , q0
q2

=⇒ q1 for (q0, q2, q1) ∈ δpop , and q0
w; q1, if the automaton

can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ ×Q and Γ ′ = Γ ∪ {⊥} be the
stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ ,
n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1, smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ〉, where w ∈ Σ∗#, q ∈ Q,

and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 ` c1 ` . . . ` cn of
moves or transitions ci ` ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:
push move: if smb(γ)l a then 〈ax, p, γ〉 ` 〈x, q, [a, p]γ〉, with (p, a, q) ∈ δpush ;

shift move: if a
.
= b then 〈bx, q, [a, p]γ〉 ` 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift ;

pop move: if am b then 〈bx, q, [a, p]γ〉 ` 〈bx, r, γ〉, with (q, p, r) ∈ δpop .

Model-Checking Structured Context-Free Languages 5

call ret han exc

call l .
= l m

ret m m m m
han l m l .

=
exc m m m m

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Fig. 1. OPM Mcall (left) and a string with chains shown by brackets (right).

Shift and pop moves are not performed when the stack contains only ⊥. Push
moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the m
relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | 〈x#, qI , ⊥〉 `∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
OP relations and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . c`]
c`+1 is a string c0c1c2 . . . c`c`+1, such

that: c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ` (` ≥ 1), and c0 l c1
.
=

c2 . . . c`−1
.
= c`mc`+1. A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where

c0 [c1c2 . . . c`]
c`+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such

that ci [si]
ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , ` (` ≥ 1).

Such a composed chain will be written as c0 [s0c1s1c2 . . . c`s`]
c`+1 . c0 (resp. c`+1)

is called its left (resp. right) context; all symbols between them form its body.

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

Chains can be identified through the traditional operator precedence parsing
algorithm. We apply it to the sample word wex = call han call call exc call ret
ret, which is compatible with Mcall (for a more complete treatment, cf. [42,32]).
First, write all precedence relations between consecutive characters, according
to Mcall. Then, recognize all innermost patterns of the form al c

.
= · · · .= cm b

as simple chains, and remove their bodies. Then, write the precedence relations
between the left and right contexts of the removed body, a and b, and iterate
this process until only ## remains. This procedure is applied to wex as follows:

1 # l call l han l call l call m exc m call
.
= ret m ret m #

2 # l call l han l call m exc m call
.
= ret m ret m #

3 # l call l han
.
= exc m call

.
= ret m ret m #

4 # l call l call
.
= ret m ret m #

5 # l call
.
= ret m #

6 #
.
= #

6 M. Chiari, D. Mandrioli, M. Pradella

The chain body removed in each step is underlined. In step 1, call[call]exc is
a simple chain, so its body call is removed. Then, in step 2 we recognize the
simple chain han[call]exc, which means han[call[call]]exc, where [call] is the
chain body removed in step 1, is a composed chain. This way, we recognize,
e.g., han[call]exc, call[han exc]call as simple chains, and han[call[call]]exc and
call[han[call[call]]exc]call as composed chains (with inner chain bodies enclosed
in brackets). Fig. 1 shows the structure of a longer version of wex , which is an
isomorphic representation of its ST as depicted in Fig. 4. Each chain corresponds
to an internal node, and the fringe of the subtree rooted at it is the chain’s body.

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c`]
c`+1

any path in A of the form q0
c1−→ q1 99K . . . 99K q`−1

c`
99K q`

q0
=⇒ q`+1. The

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relation c`m c`+1. We call a support for the composed

chain c0 [s0c1s1c2 . . . c`s`]
c`+1 any path in A of the form q0

s0; q′0
c1−→ q1

s1; q′1
c2
99K

. . .
c`
99K q`

s`; q′`
q′0=⇒ q`+1 where, for every i = 0, 1, . . . , `: if si 6= ε, then qi

si; q′i
is a support for the chain ci [si]

ci+1 , else q′i = qi.
Chains fully determine the parsing structure of any OPA over (Σ,M). If

the OPA performs the computation 〈sb, qi, [a, qj]γ〉 `∗ 〈b, qk, γ〉, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . c`s` and q`+1 = qk. This corresponds to the parsing of the
string s0c1 . . . c`s` within the contexts a,b, which contains all information needed
to build the subtree whose frontier is that string.

Consider the OPA A(Σ,M) = (Σ,M, {q}, {q}, {q}, δmax) where δmax(q, q) =
q, and δmax(q, c) = q, ∀c ∈ Σ. We call it the OP Max-Automaton over Σ,M . For
a max-automaton, each chain has a support. Since there is a chain #[s]# for any
string s compatible with M , a string is accepted by A(Σ,M) iff it is compatible
with M . If M is complete, each string is accepted by A(Σ,M), which defines the
universal language Σ∗ by assigning to any string the (unique) structure compat-
ible with the OPM. With Mcall of Fig. 1, if we take e.g. the string ret call han,
it is accepted by the max-automaton with structure #[[ret]call[han]]#.

In conclusion, given an OP alphabet, the OPM M assigns a unique structure
to any compatible string in Σ∗; unlike VPL, such a structure is not visible in the
string, and must be built by means of a non-trivial parsing algorithm. An OPA
defined on the OP alphabet selects an appropriate subset within the “universe”
of strings compatible with M . For a more complete description of the OPL family
and of its relations with other CFL we refer the reader to [42].

2.1 Operator Precedence ω-Languages

All definitions regarding OPL are extended to infinite words in the usual way,
but with a few distinctions. Given an OP alphabet (Σ,M), an ω-word w ∈ Σω

is compatible with M if every prefix of w is compatible with M . OP ω-words
are not terminated by the delimiter #. An ω-word may contain never-ending
chains of the form c0 l c1

.
= c2

.
= · · · , where the l relation between c0 and c1

is never closed by a corresponding m. Such chains are called open chains and

Model-Checking Structured Context-Free Languages 7

may be simple or composed. A composed open chain may contain both open
and closed subchains. Of course, a closed chain cannot contain an open one. A
terminal symbol a ∈ Σ is pending if it is part of the body of an open chain and
of no closed chains.

OPA classes accepting the whole class of ωOPL can be defined by augmenting
Definition 1 with Büchi or Muller acceptance conditions [41]. In this paper, we
only consider the former. The semantics of configurations, moves and infinite
runs are defined as for finite OPA. For the acceptance condition, let ρ be a run
on an ω-word w. Define

Inf(ρ) = {q ∈ Q | there exist infinitely many positions i s.t. 〈βi, q, xi〉 ∈ ρ}

as the set of states that occur infinitely often in ρ. ρ is successful iff there exists
a state qf ∈ F such that qf ∈ Inf(ρ). An ωOPBA A accepts w ∈ Σω iff there is a
successful run of A on w. The ω-language recognized by A is L(A) = {w ∈ Σω |
A accepts w}. Unlike OPA, ωOPBA do not require the stack to be empty for
word acceptance: when reading an open chain, the stack symbol pushed when
the first character of the body of its underlying simple chain is read remains into
the stack forever; it is at most updated by shift moves.

The most important closure properties of OPL are preserved by ωOPL, which
form a Boolean algebra and are closed under concatenation of an OPL with an
ωOPL [41]. The equivalence between deterministic and nondeterministic au-
tomata is lost in the infinite case, which is unsurprising, since it also happens
for regular ω-languages and ωVPL.

2.2 Modeling programs with OPA

For readers not familiar with OPL, we show how OPA can naturally model pro-
gramming languages such as Java and C++. Given a set AP of atomic proposi-
tions describing events and states of the program, we use (P(AP),MAP) as the
OP alphabet. For convenience, we consider a partitioning of AP into a set of
standard propositional labels (in round font), and structural labels (SL, in bold).
SL define the OP structure of the word: MAP is only defined for subsets of AP
containing exactly one SL, so that given two SL l1, l2, for any a, a′, b, b′ ∈ P(AP)
s.t. l1 ∈ a, a′ and l2 ∈ b, b′ we have MAP (a, b) = MAP (a′, b′). Hence, we define
an OPM on the entire P(AP) by only giving the relations between SL, as we did
for Mcall. Fig. 2 shows how to model a procedural program with an OPA. The
OPA simulates the program’s behavior with respect to the stack, by expressing
its execution traces with four event kinds: call (resp. ret) marks a procedure call
(resp. return), han the installation of an exception handler by a try statement,
and exc an exception being raised. OPM Mcall defines the context-free structure
of the word, which is strictly linked with the programming language semantics:
the l PR causes nesting (e.g., calls can be nested into other calls), and the

.
=

PR implies a one-to-one relation, e.g. between a call and the ret of the same
function, and a han and the exc it catches. Each OPA state represents a line
in the source code. First, procedure pA is called by the program loader (M0),

8 M. Chiari, D. Mandrioli, M. Pradella

pA() {
A0: try {
A1: pB();
A2: } catch {
A3: pErr();
A4: pErr();

}
Ar: }

pB() {
B0: pC();
Br: }

pC() {
C0: if (*) {
C1: throw;
C2: } else {
C3: pC();

}
Cr: }

M0 A0 A1 B0 C0

A2A3ErArAr’Mr

A4

call
pA

han

try

call
pB

call
pC

call pC

A1, B0, C0
exc

A0call
pErr

retpErr

A3call
pErr

A4ret
pA

M0

Fig. 2. Example procedural program (top) and the derived OPA (bottom). ‘*’ implies
a non-deterministic choice. Push, shift, pop moves are shown by, resp., solid, dashed
and double arrows.

and [{call,pA},M0] is pushed onto the stack, to track the program state before
the call. Then, the try statement at line A0 of pA installs a handler. All subse-
quent calls to pB and pC push new stack symbols on top of the one pushed with
han. pC may only call itself recursively, or throw an exception, but never return
normally. This is reflected by exc being the only transition leading from state
C0 to the accepting state Mr, and pB and pC having no way to a normal ret.
The OPA has a look-ahead of one input symbol, so when it encounters exc, it
must pop all symbols in the stack, corresponding to active function frames, until
it finds the one with han in it, which cannot be popped because han

.
= exc.

Notice that such behavior cannot be modeled by Visibly Pushdown Automata
or Nested Word Automata, because they need to read an input symbol for each
pop move. Thus, han protects the parent function from the exception. Since the
state contained in han’s stack symbol is A0, the execution resumes in the catch

clause of pA. pA then calls twice the error-handling function pErr , which ends
regularly both times, and returns. The string of Fig. 1 is accepted by this OPA.

In this example, we only model the stack behavior for simplicity, but other
statements, such as assignments, and other behaviors, such as continuations,
could be modeled by a different choice of the OPA and OPM, and other aspects
of the program’s state by appropriate abstractions [37].

3 POTL: Syntax and Semantics

Given a finite set of atomic propositions AP , the syntax of POTL follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | #tϕ | �tϕ | χtFϕ | χtPϕ | ϕ U tχ ϕ | ϕ Stχ ϕ
| #tHϕ | �tHϕ | ϕ U tH ϕ | ϕ StH ϕ

Model-Checking Structured Context-Free Languages 9

l call l han l call l call l call m exc m call
.
= ret m call

.
= ret m ret m #

pA pB pC pC pErr pErr pErr pErr pA
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3. The string of Fig. 1 as an OP word. Chains are shown by edges joining their
contexts. Standard atomic propositions are shown below SL: pl means a call or a ret is
related to procedure pl. First, procedure pA is called (pos. 1), and it installs a handler
in pos. 2. Then, three procedures are called, and one (pC) throws an exception, which
is caught by the handler. Two more functions are called and, finally, pA returns.

where a ∈ AP , and t ∈ {d, u}.
The semantics of POTL is based on the word structure—also called OP word

for short—(U,MAP , P), where U = {0, 1, . . . , n, n+1}, with n ∈ N is a set of word
positions; P : U → P(AP) is a function associating each position in U with the
set of atomic propositions holding in that position, with P (0) = P (n+1) = {#}.
Given two positions i, j and a PR π, we write i π j to say P (i) π P (j).

We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i, j iff i < j− 1, and i and j are resp. the left and right contexts of the
same chain. For composed chains, χ may not be one-to-one, but also one-to-many
or many-to-one. Given i, j ∈ U , relation χ has the following properties:

1. It never crosses itself: if χ(i, j) and χ(h, k), for any h, k ∈ U , then we have
i < h < j =⇒ k ≤ j and i < k < j =⇒ i ≤ h.

2. If χ(i, j), then il i+ 1 and j − 1 m j.

3. There exists at most one single position h, called leftmost context of j, s.t.
χ(h, j) and hl j or h

.
= j; for any k s.t. χ(k, j) and k m j we have k > h.

4. There exists at most one single position h, called rightmost context of i, s.t.
χ(i, h) and im h or i

.
= h; for any k s.t. χ(i, k) and il k we have k < h.

Property 4 says that when the chain relation is one-to-many, the contexts of
the outermost chains are in the

.
= or m relation, while the inner ones are in the

l relation. Property 3 says that contexts of outermost many-to-one chains are
in the

.
= or l relation, the inner ones being in the m relation. In the ST, the

right context j of a chain is at the same level as the left one i when i
.
= j (e.g.,

in Fig. 4, pos. 1 and 11), at a lower level when il j (e.g., pos. 1 with 7, and 9),
at a higher level if im j (e.g., pos. 3 and 4 with 6).

The truth of POTL formulas is defined w.r.t. a single word position. Let
w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P (i). Operators such as ∧ and ¬ have the usual semantics from
propositional logic. Next, while giving the formal semantics of POTL operators,
we illustrate it by showing how it can be used to express properties on program
execution traces, such as the one of Fig. 3.

10 M. Chiari, D. Mandrioli, M. Pradella

·

(0) ·

call (1) ·

·

·

han (2) ·

call (3) ·

call (4) ·

call (5)

exc (6)

call (7) ret (8)

call (9) ret (10)

ret (11)

(12)

Fig. 4. The ST corresponding to the word
of Fig. 3. Dots are internal nodes.

a) Next/back operators. The down-
ward next and back operators #d and
�d are like their LTL counterparts,
except they are true only if the next
(resp. current) position is at a lower or
equal ST level than the current (resp.
preceding) one. The upward next and
back, #u and �u, are symmetric. For-
mally, (w, i) |= #dϕ iff (w, i + 1) |= ϕ
and i l (i + 1) or i

.
= (i + 1), and

(w, i) |= �dϕ iff (w, i − 1) |= ϕ, and
(i− 1) l i or (i− 1)

.
= i. Substitute l

with m to obtain the semantics for #u

and �u. E.g., we can write #dcall to
say that the next position is an inner
call (it holds in pos. 2, 3, 4 of Fig. 3),
�dcall to say that the previous posi-
tion is a call, and the current is the
first of the body of a function (pos. 2,
4, 5), or the ret of an empty one (pos.
8, 10), and �ucall to say that the current position terminates an empty function
frame (holds in 6, 8, 10). In pos. 2 #dpB holds, but #upB does not.

b) Chain next/back operators. The chain next and back operators χtF and
χtP , t ∈ {d, u}, evaluate their argument respectively on future and past positions
in the chain relation with the current one. The downward (resp. upward) variant
only considers chains whose right context goes down (resp. up) in the ST. E.g.,
in pos. 1 of Fig. 3, χdFpErr holds because χ(1, 7) and χ(1, 9), meaning that pA
calls pErr at least once. Formally, (w, i) |= χdFϕ iff there exists a position j > i
such that χ(i, j), i l j or i

.
= j, and (w, j) |= ϕ. (w, i) |= χdPϕ iff there exists

a position j < i such that χ(j, i), j l i or j
.
= i, and (w, j) |= ϕ. Replace l

with m for the upward versions. In Fig. 3, χuFexc is true in call positions whose
procedure is terminated by an exception thrown by an inner procedure (e.g. pos.
3 and 4). χuP call is true in exc statements that terminate at least one procedure
other than the one raising it, such as the one in pos. 6. χdF ret and χuF ret hold
in calls to non-empty procedures that terminate normally, and not due to an
uncaught exception (e.g., pos. 1).

c) Until/Since operators. POTL has two kinds of until and since operators.
They express properties on paths, which are sequences of positions obtained by
iterating the different kinds of next or back operators. In general, a path of length
n ∈ N between i, j ∈ U is a sequence of positions i = i1 < i2 < · · · < in = j.
The until operator on a set of paths Γ is defined as follows: for any word w and
position i ∈ U , and for any two POTL formulas ϕ and ψ, (w, i) |= ϕ U(Γ) ψ
iff there exist a position j ∈ U , j ≥ i, and a path i1 < i2 < · · · < in between
i and j in Γ such that (w, ik) |= ϕ for any 1 ≤ k < n, and (w, in) |= ψ. Since
operators are defined symmetrically. Note that, depending on Γ , a path from

Model-Checking Structured Context-Free Languages 11

i to j may not exist. We define until/since operators by associating them with
different sets of paths.

The summary until ψU tχ θ (resp. since ψStχ θ) operator is obtained by induc-
tively applying the #t and χtF (resp. �t and χtP) operators. It holds in a position
in which either θ holds, or ψ holds together with #t(ψ U tχ θ) (resp. �t(ψ Stχ θ))
or χtF (ψ U tχ θ) (resp. χtP (ψ Stχ θ)). It is an until operator on paths that can move
not only between consecutive positions, but also between contexts of a chain,
skipping its body. With the OPM of Fig. 1, this means skipping function bodies.
The downward variants can move between positions at the same level in the ST
(i.e., in the same simple chain body), or down in the nested chain structure. The
upward ones remain at the same level, or move to higher levels of the ST.

Formula > Uuχ exc is true in positions contained in the frame of a function
that is terminated by an exception. It is true in pos. 3 of Fig. 3 because of path
3-6, and false in pos. 1, because no path can enter the chain whose contexts are
pos. 1 and 11. Formula > Udχ exc is true in call positions whose function frame
contains excs, but that are not necessarily terminated by one of them, such as
the one in pos. 1 (with path 1-2-6).

We define Downward Summary Paths (DSP) as follows. Given an OP word
w, and two positions i ≤ j in w, the DSP between i and j, if it exists, is a
sequence of positions i = i1 < i2 < · · · < in = j such that, for each 1 ≤ p < n,

ip+1 =

{
k if k = max{h | h ≤ j ∧ χ(ip, h) ∧ (ip l h ∨ ip

.
= h)} exists;

ip + 1 otherwise, if ip l (ip + 1) or ip
.
= (ip + 1).

The Downward Summary (DS) until and since operators Udχ and Sdχ use as Γ the
set of DSP starting in the position in which they are evaluated. The definition
for the upward counterparts is, again, obtained by substituting l with m. In
Fig. 3, call Udχ (ret ∧ pErr) holds in pos. 1 because of path 1-7-8 and 1-9-10,
(call ∨ exc) Suχ pB in pos. 7 because of path 3-6-7, and (call ∨ exc) Uuχ ret in 3
because of path 3-6-7-8.
d) Hierarchical operators. A single position may be the left or right context
of multiple chains. The operators seen so far cannot keep this fact into account,
since they “forget” about a left context when they jump to the right one. Thus,
we introduce the hierarchical next and back operators. The upward hierarchical
next (resp. back), #uHψ (resp. �uHψ), is true iff the current position j is the right
context of a chain whose left context is i, and ψ holds in the next (resp. previous)
pos. j′ that is the right context of i, with il j, j′. So, #uHpErr holds in pos. 7 of
Fig. 3 because pErr holds in 9, and �uHpErr in 9 because pErr holds in 7. In the
ST, #uH goes up between calls to pErr , while �uH goes down. Their downward
counterparts behave symmetrically, and consider multiple inner chains sharing
their right context. They are formally defined as:

– (w, i) |= #uHϕ iff there exist a position h < i s.t. χ(h, i) and h l i and a
position j = min{k | i < k ∧ χ(h, k) ∧ hl k} and (w, j) |= ϕ;

– (w, i) |= �uHϕ iff there exist a position h < i s.t. χ(h, i) and h l i and a
position j = max{k | k < i ∧ χ(h, k) ∧ hl k} and (w, j) |= ϕ;

12 M. Chiari, D. Mandrioli, M. Pradella

– (w, i) |= #dHϕ iff there exist a position h > i s.t. χ(i, h) and i m h and a
position j = min{k | i < k ∧ χ(k, h) ∧ k m h} and (w, j) |= ϕ;

– (w, i) |= �dHϕ iff there exist a position h > i s.t. χ(i, h) and i m h and a
position j = max{k | k < i ∧ χ(k, h) ∧ k m h} and (w, j) |= ϕ.

In the ST of Fig. 4, #dH and �dH go down and up among calls terminated by the
same exc. For example, in pos. 3 #dHpC holds, because both pos. 3 and 4 are
in the chain relation with 6. Similarly, in pos. 4 �dHpB holds. Note that these
operators do not consider leftmost/rightmost contexts, so #uHret is false in pos.
9, as call

.
= ret, and pos. 11 is the rightmost context of pos. 1.

The hierarchical until and since operators are defined by iterating these next
and back operators. The upward hierarchical path (UHP) between i and j is a
sequence of positions i = i1 < i2 < · · · < in = j such that there exists a position
h < i such that for each 1 ≤ p ≤ n we have χ(h, ip) and h l ip, and for each
1 ≤ q < n there exists no position k such that iq < k < iq+1 and χ(h, k). The
until and since operators based on the set of UHP starting in the position in
which they are evaluated are denoted as UuH and SuH . E.g., call UuH pErr holds
in pos. 7 because of the singleton path 7 and path 7-9, and callSuH pErr in pos. 9
because of paths 9 and 7-9.

The downward hierarchical path (DHP) between i and j is a sequence of
positions i = i1 < i2 < · · · < in = j such that there exists a position h > j such
that for each 1 ≤ p ≤ n we have χ(ip, h) and ip m h, and for each 1 ≤ q < n
there exists no position k such that iq < k < iq+1 and χ(k, h). The until and
since operators based on the set of DHP starting in the position in which they
are evaluated are denoted as UdH and SdH . In Fig. 3, callUdH pC holds in pos. 3,
and call SdH pB in pos. 4, both because of path 3-4.

The POTL until and since operators enjoy expansion laws similar to those
of LTL. Here we give those for two until operators, those for their since and
downward counterparts being symmetric.

ϕ U tχ ψ ≡ ψ ∨
(
ϕ ∧

(
#t (ϕ U tχ ψ) ∨ χtF (ϕ U tχ ψ)

))
ϕ UuH ψ ≡ (ψ ∧ χdP> ∧ ¬χuP>) ∨

(
ϕ ∧#uH(ϕ UuH ψ)

)
3.1 Expressiveness of POTL

We first define some derived operators. For t ∈ {d, u}, we define the down-
ward/upward summary eventually as 3tϕ := >U tχϕ, and the downward/upward
summary globally as �tϕ := ¬3t(¬ϕ). 3uϕ and �uϕ resp. say that ϕ holds in
one or all positions in the path from the current position to the root of the ST.
3dϕ says that ϕ holds in at least one position in the current subtree, and �dϕ
in all of them. E.g., if �d(¬pA) holds in a call, it means that pA never holds in
its whole function body, which is the subtree rooted next to the call.

In the companion paper, we prove

Theorem 1. POTL = FOL with one free variable on OP words.

Model-Checking Structured Context-Free Languages 13

Equivalence to FOL on the relevant algebraic structure is a desirable feature of
linear-time temporal logics, and it was proved for LTL [38] and NWTL [2]. It
is in some sense a theoretical assurance of the sufficient expressive power of the
logic. Moreover, NWTL ⊂ OPTL was proved in [22], and OPTL ⊆ POTL comes
from Theorem 1 and the semantics of OPTL being expressible in FOL. In the
companion paper, we also prove that there exist POTL formulas not expressible
in OPTL. Thus, we can claim CaRet [6] ⊆ NWTL ⊂ OPTL ⊂ POTL. One of
such formulas is 3dpA which, evaluated e.g. on a han position with a matched
exc, states that pA holds in one of the positions in the same subtree.

More importantly, POTL can express many useful requirements of proce-
dural programs. To emphasize the potential practical applications in automatic
verification, we supply a few examples of typical program properties expressed as
POTL formulas, not all of them being expressible in the other above languages.

The LTL globally can be written as �ψ := ¬3u(3d¬ψ). The two nested
eventually operators enumerate all future positions by going up and then down
in any direction in the syntax tree: when negated, this means ¬ψ may never hold.
POTL can express Hoare-style pre/postconditions with formulae such as�(call∧
ρ =⇒ χdF (ret ∧ θ)), where ρ is the precondition, and θ is the postcondition.

Unlike NWTL, POTL can easily express properties related to exception
handling and interrupt management [42]. E.g., the shortcut CallThr(ψ) :=
#u(exc∧ψ)∨χuF (exc∧ψ), evaluated in a call, states that the procedure currently
started is terminated by a exc in which ψ holds. So, �(call∧ρ∧CallThr(>) =⇒
CallThr(θ)) means that if precondition ρ holds when a procedure is called, then
postcondition θ must hold if that procedure is terminated by an exception. In ob-
ject oriented programming languages, if ρ ≡ θ is a class invariant asserting that a
class instance’s state is valid, this formula expresses weak exception safety [1], and
strong exception safety if ρ and θ express particular states of the class instance.
The no-throw guarantee can be stated with �(call ∧ pA =⇒ ¬CallThr(>)),
meaning procedure pA is never interrupted by an exception.

Stack inspection [28,36], i.e. properties regarding the sequence of procedures
active in the program’s stack at a certain point of its execution, is an impor-
tant class of requirements that can be expressed with shortcut Scall(ϕ,ψ) :=
(call =⇒ ϕ) Sdχ (call ∧ ψ), which subsumes the call since of CaRet, as it also

works with exceptions. E.g., �
(
(call ∧ pB ∧ Scall(>,pA)) =⇒ CallThr(>)

)
means that whenever pB is executed and at least one instance of pA is on the
stack, pB is terminated by an exception. The OPA of Fig. 2 satisfies this formula,
because pB is called by pA, and pC throws.

4 Model Checking

Given an OP alphabet (P(AP),MAP), where AP is a finite set of atomic propo-
sitions, and a POTL formula ϕ, we build an OPA Aϕ = (P(AP),MAP , Q, I, F, δ)
that accepts models of ϕ. The construction of Aϕ resembles the classical one for
LTL and the ones for NWTL and OPTL, diverging from them significantly when
dealing with temporal obligations that involve positions in the chain relation.

14 M. Chiari, D. Mandrioli, M. Pradella

We first introduce Cl(ϕ), the closure of ϕ, containing all subformulas of
ϕ, and some auxiliary operators. The latter are needed to model-check chain
next and back operators. For any PR π ∈ {l, .=,m}, we define them as follows:
(w, i) |= χπFϕ iff there exists j > i such that χ(i, j), i π j, and (w, j) |= ϕ;
(w, i) |= χπPϕ iff there exists j < i such that χ(j, i), j π i, and (w, j) |= ϕ.

Cl(ϕ) is the smallest set such that, for t ∈ {d, u}:

1. ϕ ∈ Cl(ϕ),
2. AP ⊆ Cl(ϕ),
3. if ψ ∈ Cl(ϕ) and ψ 6= ¬θ, then ¬ψ ∈ Cl(ϕ) (we identify ¬¬ψ with ψ);
4. if ¬ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ);
5. if any of ψ ∧ θ or ψ ∨ θ is in Cl(ϕ), then ψ, θ ∈ Cl(ϕ);
6. if any of #tψ, �tψ, χtFψ, or χtPψ is in Cl(ϕ), then ψ ∈ Cl(ϕ);

7. if χdFψ (resp. χuFψ) is in Cl(ϕ), then χl
Fψ (resp. χm

Fψ), χ
.
=
Fψ, χL are in it;

8. if χdPψ (resp. χuPψ) is in Cl(ϕ), then χl
Pψ (resp. χm

Pψ), χ
.
=
Pψ are in it;

9. if any of ψ U tχ θ, ψ Stχ θ, ψ U tH θ, or ψ StH θ is in Cl(ϕ), then ψ, θ ∈ Cl(ϕ);
10. if ψ U tχ θ ∈ Cl(ϕ), then #t(ψ U tχ θ), χtF (ψ U tχ θ) ∈ Cl(ϕ) (since is symmetric).

The set Atoms(ϕ) contains all consistent subsets of Cl(ϕ), i.e. all Φ ⊆ Cl(ϕ) s.t.

– for every ψ ∈ Cl(ϕ), ψ ∈ Φ iff ¬ψ /∈ Φ;
– ψ ∧ θ ∈ Φ, iff ψ ∈ Φ and θ ∈ Φ;
– ψ ∨ θ ∈ Φ, iff ψ ∈ Φ or θ ∈ Φ, or both.

The consistency constraints on Atoms(ϕ) will be augmented incrementally in
the following, for each operator.

The set of states of Aϕ is Q = Atoms(ϕ)2, and its elements, which we denote
with Greek capital letters, are of the form Φ = (Φc, Φp), where Φc is the set
of formulas that hold in the current position, and Φp is the set of temporal
obligations. The latter keep track of arguments of temporal operators that must
be satisfied after a chain body, skipping it. The way they do so depends on the
transition relation δ, which we also define incrementally. Each automaton state is
associated to word positions. So, for (Φ, a, Ψ) ∈ δpush/shift , with Φ ∈ Atoms(ϕ)2

and a ∈ P(AP), we have Φc ∩ AP = a (by Φc ∩ AP we mean the set of atomic
propositions in Φc). Pop moves do not read input symbols, and the automaton
remains at the same position when performing them: for any (Φ,Θ, Ψ) ∈ δpop
we impose Φc = Ψc. The initial set I contains states of the form (Φc, Φp), with
ϕ ∈ Φc, and the final set F states of the form (Ψc, Ψp), s.t. Ψc∩AP = {#} and Ψc
contains no future operators. We extend the construction to the most important
operators, leaving the others and correctness proofs to [21].

Next/Back Operators. Let (Φ, a, Ψ) ∈ δshift ∪ δpush , with Φ, Ψ ∈ Atoms(ϕ)2,
a ∈ P(AP), and let b = Ψc ∩AP : we have #dψ ∈ Φc iff ψ ∈ Ψc and either al b
or a

.
= b. The constraints introduced for the �d operator are symmetric, and for

their upward counterparts it suffices to replace l with m.
If χdFψ ∈ Cl(ϕ), for each Φ ∈ Atoms(ϕ)2 we impose that χdFψ ∈ Φc iff

χl
Fψ ∈ Φc or χ

.
=
Fψ ∈ Φc. Analogous rules are defined for the upward and past

chain operators. The auxiliary symbol χL forces the current position to be the

Model-Checking Structured Context-Free Languages 15

input state stack PR move

1 call han exc ret#
Φ0
c = {call, χdF ret, χ

.
=
F ret},

Φ0
p = {χL}

⊥ # l call push

2 hanexc ret# Φ1 = ({han}, {χ
.
=
F ret, χL}) [call, Φ0]⊥ calll han push

3 exc ret# Φ2 = ({exc}, ∅) [han, Φ1][call, Φ0]⊥ han
.
= exc shift

4 ret# Φ3 = ({ret}, ∅) [exc, Φ1][call, Φ0]⊥ excm ret pop

5 ret# Φ4 = ({ret}, {χ
.
=
F ret}) [call, Φ0]⊥ call

.
= ret shift

6 # Φ5 = ({#}, ∅) [ret, Φ0]⊥ retm # pop

7 # Φ5 = ({#}, ∅) ⊥ – –

Fig. 5. Example accepting run of the automaton for χdF ret.

first one of a chain body. Let the current state of the OPA be Φ ∈ Atoms(ϕ)2:
χL ∈ Φp iff the next transition (i.e. the one reading the current position) is a
push. Formally, if (Φ, a, Ψ) ∈ δshift or (Φ,Θ, Ψ) ∈ δpop , for any Φ,Θ, Ψ and a, then
χL 6∈ Φp. If (Φ, a, Ψ) ∈ δpush , then χL ∈ Φp. For any initial state (Φc, Φp) ∈ I,
we have χL ∈ Φp iff # 6∈ Φc.

If χ
.
=
Fψ ∈ Cl(ϕ), its satisfaction is ensured by the following constraints on δ:

1. Let (Φ, a, Ψ) ∈ δpush/shift : then χ
.
=
Fψ ∈ Φc iff χ

.
=
Fψ, χL ∈ Ψp;

2. let (Φ,Θ, Ψ) ∈ δpop : then χ
.
=
Fψ 6∈ Φp, and χ

.
=
Fψ ∈ Θp iff χ

.
=
Fψ ∈ Ψp;

3. let (Φ, a, Ψ) ∈ δshift : then χ
.
=
Fψ ∈ Φp iff ψ ∈ Φc.

If χl
Fψ ∈ Cl(ϕ), χl

Fψ is allowed in the pending part of initial states, and we add
the following constraints:

4. Let (Φ, a, Ψ) ∈ δpush/shift : then χl
Fψ ∈ Φc iff χl

Fψ, χL ∈ Ψp;
5. let (Φ,Θ, Ψ) ∈ δpop : then χl

Fψ ∈ Θp iff χL ∈ Ψp, and either χl
Fψ ∈ Ψp or

ψ ∈ Φc.

We illustrate how the construction works for χ
.
=
F with the example of Fig. 5.

The OPA starts in state Φ0, with χdF ret ∈ Φ0
c , and guesses that χdF will be

fulfilled by χ
.
=
F , so χ

.
=
F ret ∈ Φ0

c . call is read by a push move, resulting in state
Φ1. The OPA guesses the next move will be a push, so χL ∈ Φ1

p. By rule 1,

we have χ
.
=
F ret ∈ Φ1

p. The last guess is immediately verified by the next push

(step 2-3). Thus, the pending obligation for χ
.
=
F ret is stored onto the stack in Φ1.

The OPA, then, reads exc with a shift, and pops the stack symbol containing
Φ1 (step 4-5). By rule 2, the temporal obligation is resumed in the next state

Φ4, so χ
.
=
F ret ∈ Φ4

p. Finally, ret is read by a shift which, by rule 3, may occur

only if ret ∈ Φ4
c . Rule 3 verifies the guess that χ

.
=
F ret holds in Φ0, and fulfills

the temporal obligation contained in Φ4
p, by preventing computations in which

ret 6∈ Φ4
c from continuing. Had the next transition been a pop (e.g. because there

was no ret and callm#), the run would have been blocked by rule 2, preventing
the OPA from reaching an accepting state, and from emptying the stack.

16 M. Chiari, D. Mandrioli, M. Pradella

Summary Until and Since. The construction for these operators is based
on their expansion laws. For any Φ ∈ Atoms(ϕ)2, we have ψ U tχ θ ∈ Φc, with
t ∈ {d, u} being a direction, iff either: 1. θ ∈ Φc, 2. #t(ψ U tχ θ), ψ ∈ Φc, or
3. χtF (ψ U tχ θ), ψ ∈ Φc. The rules for since are symmetric.

Hierarchical Operators. For the hierarchical operators, we do not give an ex-
plicit OPA construction, but we rely on a translation into other POTL operands.
For each hierarchical operator η in ϕ, we add a propositional symbol q(η).
The upward hierarchical operators consider the right contexts of chains shar-
ing the same left context. To distinguish such positions, we define formula
γL,η := χl

P

(
q(η)∧#(�¬q(η))∧�(�¬q(η))

)
, where � and � are as in Section 3.1.

and � are the LTL next and back operators, for which model checking can
be done as for #d and �d, but removing the restrictions on PR. γL,η, evaluated
on a position i, asserts that q(η) holds in the unique position h such that χ(h, i)
and h l i. Thus, q(η) can be used to distinguish other positions j such that
χ(h, j) and h l j, as χl

P q(η) holds in them. The translations for future upward
hierarchical operators follow, the others being analogous.

#uHψ := γL,#uHψ ∧#
(
(¬χl

P q(#uHψ)) U
u
χ (χl

P q(#uHψ) ∧ ψ)
)

ψ UuH θ := γL,ψUuHθ ∧ (χl
P q(ψUuHθ) =⇒ ψ) Uuχ (χl

P q(ψUuHθ) ∧ θ)

4.1 Model Checking for ω-Words

To perform model checking of a POTL formula ϕ on OP ω-words, we build a
generalized ωOPBA Aωϕ = (P(AP),MAP , Qω, I,F, δ), where Qω = Atoms(ϕ)2×
P(Cl stack (ϕ)), which differs from the finite-word OPA only for the state set and
the acceptance condition. As in [2], the generalized Büchi acceptance condition
is a slight variation on the one shown in Section 2.1: F is the set of sets of Büchi
final states, and an ω-word is accepted iff at least one state from each one of the
sets contained in F is visited infinitely often during the computation.

In finite words, the stack is empty at the end of every accepting computa-
tion, which implies the satisfaction of all temporal constraints tracked by the
pending part of stack symbols. In ωOPBAs, the stack may never be empty, and
symbols with a non-empty pending part may remain in it indefinitely, never en-
forcing the satisfaction of the respective formulas. To overcome this issue, we
use Atoms(ϕ)2 ×P(Cl stack (ϕ)), with Cl stack (ϕ) ⊆ Cl(ϕ), as the state set of the
ωOPBA. Such states have the form Φ = (Φc, Φp, Φs), where Φc and Φp have
the same role as in the finite-word case, and Φs is the in-stack part of Φ. All
rules previously defined for Φc and Φp remain the same. Φs contains elements of
Cl stack (ϕ) contained in any symbol currently on the stack. Cl stack (ϕ) contains
formulas in Cl(ϕ) that use the stack to ensure the satisfaction of future tempo-
ral requirements, namely all χπFψ ∈ Cl(ϕ), with π ∈ {l, .=,m}. Thus, pending
temporal obligations are moved from the stack to the ωOPBA state, and they
can be considered by the Büchi acceptance condition.

Suppose we want to model check χ
.
=
Fψ. Formula χ

.
=
Fψ must be inserted in the

in-stack part of the current state whenever a stack symbol containing it in its

Model-Checking Structured Context-Free Languages 17

input state stack PR

1 call call hanexc ret ret (call)ω
Φ0 = ({call, χdF ret, χ

.
=
F ret},

{χL}, ∅)
⊥ l

2 call hanexc ret ret (call)ω
Φ1 = ({call, χdF ret, χ

.
=
F ret},

{χL, χ
.
=
F ret}, ∅)

[call, Φ0]⊥ l

3 hanexc ret ret (call)ω
Φ2 = ({han}, {χL, χ

.
=
F ret},

{χ
.
=
F ret})

[call, Φ1][call, Φ0]⊥ l

4 exc ret ret (call)ω Φ3 = ({exc}, ∅, {χ
.
=
F ret}) [han, Φ2][call, Φ1][call, Φ0]⊥ .

=

5 ret ret (call)ω Φ4 = ({ret}, ∅, {χ
.
=
F ret}) [exc, Φ2][call, Φ1][call, Φ0]⊥ m

6 ret ret (call)ω
Φ5 = ({ret}, {χ

.
=
F ret},

{χ
.
=
F ret})

[call, Φ1][call, Φ0]⊥ .
=

7 ret (call)ω Φ4 [ret, Φ1][call, Φ0]⊥ .
=

8 ret (call)ω Φ6 = ({ret}, {χ
.
=
F ret}, ∅) [call, Φ0]⊥ .

=
9 (call)ω Φ7 = ({call}, ∅, ∅) [ret, Φ0]⊥ m

Fig. 6. Prefix of an accepting run of the automaton for χdF ret.

pending part is pushed. It must be kept in the in-stack part of the current state
until the last stack symbol containing it in its pending part is popped, marking
the satisfaction of its temporal requirement. Then, it is possible to define an
acceptance set F

χ
.
=
Fψ
∈ F, as the set of states not containing χ

.
=
Fψ in any part.

Fig. 6 shows an ωOPBA run of this kind. Notice that after step 7 χ
.
=
Fψ does not

appear in any state’s in-stack part, so the run is accepting.
This construction is formalized as follows. Let ψ ∈ Cl stack (ϕ). We add a few

constraints on the transition relations. For any Φ,Θ, Ψ ∈ Qω and a ∈ P(AP):

6. let (Φ, a,Θ) ∈ δpush : if ψ ∈ Φp, then ψ ∈ Θs;
7. let (Φ, a,Θ) ∈ δpush/shift : if ψ ∈ Φs, then ψ ∈ Θs;
8. let (Φ,Θ, Ψ) ∈ δpop : if ψ ∈ Φs and ψ ∈ Θs, then ψ ∈ Ψs.

An acceptance condition for summary until operators is also needed. For
ψ Udχ θ ∈ Cl(ϕ), we add an acceptance set FψUdχθ such that for any Φ in it we

have χl
F (ψ Udχ θ), χ

.
=
F (ψ Udχ θ) 6∈ Φs, and either ψ Udχ θ 6∈ Φc or θ ∈ Φc. The

condition for ψ Uuχ θ is symmetric.

4.2 Complexity

The set Cl(ϕ) is linear in |ϕ|, the length of ϕ. Atoms(ϕ) has size at most
2|Cl(ϕ)| = 2O(|ϕ|), and the size of the set of states is the square of that in
the finite case, and is bounded by its cube in the ω-case. Moreover, the use of
the equivalences for the hierarchical operators causes only a linear increase in
the length of ϕ. Therefore,

Theorem 2. Given a POTL formula ϕ, it is possible to build an OPA or an
ωOPBA Aϕ accepting the language denoted by ϕ with at most 2O(|ϕ|) states.

Aϕ can then be intersected [41] with an OPA/ωOPBA modeling a program (e.g.
Fig. 2), and emptiness can be decided with summarization techniques [4].

18 M. Chiari, D. Mandrioli, M. Pradella

Table 1. Results of the evaluation. ‘# states’ refers to the OPA to be verified.

Benchmark name # states Time (ms) Memory (KiB) Result
Total MC only

1 generic (Fig. 2) 12 867 70,040 10,166 True
2 generic medium 24 673 70,064 4,043 False
3 generic larger 30 1,014 70,063 14,160 True
4 Jensen 42 305 70,050 3,154 True
5 unsafe stack 63 1,493 109,610 43,177 False
6 safe stack 77 637 70,089 7,234 True
7 unsafe stack neutrality 63 5,286 383,312 167,654 True
8 safe stack neutrality 77 840 70,077 16,773 True

5 Experimental Evaluation

We implemented the OPA construction of Section 4 in an explicit-state model
checking tool called POMC. The tool is written in Haskell [44], a purely func-
tional, statically typed programming language with lazy evaluation. POMC
checks OPA for emptiness by checking the reachability of an accepting con-
figuration, by means of a modified DFS of the transition relation. This algo-
rithm, similar to the one in [9], exploits the fact that all transitions only con-
sider the topmost stack symbol, so reachability is actually computed only for
semi-configurations made of one stack symbol and one state. Each time a chain
support is explored, its ending semi-configuration is saved and associated with
the starting one, so the next time the latter is reached, the support does not have
to be re-explored. This allows the algorithm to exploit the cyclicities of OPA to
terminate after having explored the whole transition relation. Given a POTL
specification ϕ and an OPA A to be checked, POMC executes the reachability
algorithm, generating the product between A and the OPA for ¬ϕ on-the-fly.
The present prototype of POMC only supports finite-word model checking; its
extension to deal with ω-languages is under development.

We checked with POMC several requirements on three case studies and we
report the results in Table 1. Some additional formulas we checked are in Table 2.
More detailed data on how to reproduce such results will be made publicly avail-
able as an artifact. The experiments were executed on a laptop with a 2.2 GHz
Intel processor and 15 GiB of RAM, running Ubuntu GNU/Linux 20.04. In the
tables, by “Total” memory we mean the maximum resident memory including
the Haskell runtime (which allocates 70 MiB by default), and by “MC only” the
maximum memory used by model checking as reported by the runtime. Since
model checking is polynomial in OPA size and exponential in formula length, we
focus on checking a variety of requirements, rather than large OPA.

Generic procedural program. We checked formula

�
(
(call ∧ pB ∧ Scall(>,pA)) =⇒ CallThr(>)

)
from Section 3.1 on the OPA of Fig. 2 (bench. 1), and also against two larger
OPA (2, where the property does not hold, and 3, where it holds).

Model-Checking Structured Context-Free Languages 19

We also checked the largest of such OPA against a set of formulas devised
with the purpose of testing all POTL operators. The results are reported in
Table 2. All formulas are checked very quickly, with only one outlier that runs
out of memory. We ran the same experiment on a machine with a 2.0 GHz AMD
CPU and 512 GiB of RAM running Debian GNU/Linux 10, obtaining a time of
367 s with a memory occupancy of 16.3 GiB.

Stack Inspection. The security framework of the Java Development Kit (JDK)
is based on stack inspection, i.e. the analysis of the contents of the program’s
stack during the execution. The JDK provides method checkPermission(perm)

from class AccessController, which searches the stack for frames of functions
that have not been granted permission perm. If any are found, an exception
is thrown. Such permission checks prevent the execution of privileged code by
unauthorized parts of the program, but they must be placed in sensitive points
manually. Failure to place them appropriately may cause the unauthorized exe-
cution of privileged code. An automated tool to check that no code can escape
such checks is thus desirable. Any such tool would need the ability to model ex-
ceptions, as they are used to avoid code execution in case of security violations.

[36] explains such needs by providing an example Java program for managing
a bank account. It allows the user to check the account balance, and to withdraw
money. To perform such tasks, the invoking program must have been granted
permissions CanPay and Debit, respectively. We modeled such program as an
OPA (4), and proved that the program enforces such security measures effectively
by checking it against the formula

�(call ∧ read =⇒ ¬(> Sdχ (call ∧ ¬CanPay ∧ ¬read)))

meaning that the account balance cannot be read if some function in the stack
lacks the CanPay permission (a similar formula checks the Debit permission).

Exception Safety. [52] is a tutorial on how to make exception-safe generic con-
tainers in C++. It presents two implementations of a generic stack data struc-
ture, parametric on the element type T. The first one is not exception-safe: if the
constructor of T throws an exception during a pop action, the topmost element is
removed, but it is not returned, and it is lost. This violates the strong exception
safety requirement that each operation is rolled back if an exception is thrown.
The second version of the data structure instead satisfies such requirement.

While exception safety is, in general, undecidable, it is possible to prove
the stronger requirement that each modification to the data structure is only
committed once no more exceptions can be thrown. We modeled both versions
as OPA, and checked such requirement with the following formula:

�(exc =⇒ ¬((�umodified∨χuP modified)∧χuP (Stack :: push∨Stack :: pop)))

POMC successfully found a counterexample for the first implementation (5),
and proved the safety of the second one (6).

Additionally, we proved that both implementations are exception neutral (7,
8), i.e. Stack functions do not block exceptions thrown by the underlying type

20 M. Chiari, D. Mandrioli, M. Pradella

T. This was accomplished by checking the following formula:

�(exc ∧�uT ∧ χdP (han ∧ χdP Stack) =⇒ χdPχ
d
Pχ

u
Fexc).

Table 2. Results of the additional experiments on OPA “generic larger”.

Formula Time Memory (KiB) Res-
(ms) Tot. MC ult

χdFpErr 1.1 70,095 175 False
#d(#d(call ∧ χuF exc)) 21.0 70,095 1,290 False
#d(han ∧ (χdF (exc ∧ χuP call))) 42.2 70,088 2,297 False
�(exc =⇒ χuP call) 10.7 70,099 839 True
> Udχ exc 2.2 70,093 121 False
#d(#d(> Udχ exc)) 4.3 70,094 113 False
�((call ∧ pA ∧ (¬ret Udχ WRx)) =⇒ χuF exc) 3,257.7 238,833 102,582 True
#d(#ucall) 0.7 70,094 139 False
#d(#d(#d(�ucall))) 3.4 70,108 126 False
χdF (#d(�ucall)) 1.3 70,096 137 False
�((call ∧ pA ∧ CallThr(>)) =⇒ CallThr(eB)) 7,793.7 402,420 173,639 False
3(#dHpB) 2.1 70,097 114 False
3(�dHpB) 2.8 70,097 114 False
3(pA ∧ (call UdH pC)) 594.9 77,806 29,786 True
3(pC ∧ (call SdH pA)) 676.6 96,296 37,949 True
�((pC ∧ χuF exc) =⇒ (¬pA SdH pB)) — — — OOM
�(call ∧ pB =⇒ ¬pC UuH pErr) 198.2 70,088 10,606 True
3(#uHpErr) 1.1 70,093 114 False
3(�uHpErr) 1.2 70,089 114 False
3(pA ∧ (call UuH pB)) 10.3 70,105 115 False
3(pB ∧ (call SuH pA)) 10.8 70,095 115 False
�(call =⇒ χdF ret) 3.0 70,095 112 False
�(call =⇒ ¬#u exc) 1.9 70,106 113 False
�(call ∧ pA =⇒ ¬CallThr(>)) 110.7 70,094 4,937 False
�(exc =⇒ ¬(�u(call ∧ pA) ∨ χuP (call ∧ pA))) 28.9 70,095 112 False
�((call ∧ pB ∧ (call Sdχ (call ∧ pA))) =⇒ CallThr(>) 926.1 70,104 13,310 True
�(han =⇒ χuF ret) 17.0 70,079 1,252 True
> Uuχ exc 7.7 70,101 121 True
#d(#d(> Uuχ exc)) 44.6 70,104 2,376 True
#d(#d(#d(> Uuχ exc))) 123.7 70,090 5,261 False
�(call ∧ pC =⇒ (> Uuχ exc ∧ χdPhan)) 92.9 70,096 1,346 False
call Udχ (ret ∧ pErr) 1.8 70,107 114 False
χdF (call ∧ ((call ∨ exc) Suχ pB)) 10.8 70,086 117 False
#d(#d((call ∨ exc) Uuχ ret)) 5.3 70,094 114 False

6 Conclusions

We introduced the temporal logic POTL, gave an automata-theoretic model
checking procedure, and implemented it in a prototype tool. The results obtained
in its experimental evaluation are promising. Additionally, POTL is proved to be

Model-Checking Structured Context-Free Languages 21

FO-complete in the companion paper. We argue that the strong gain in expres-
sive power w.r.t. previous approaches to model checking CFL, which comes with-
out an increase in computational complexity, is worth the technicalities needed
to achieve the present—and future—results.

In the evaluation, we used models directly coded into OPAs. To ease user
interaction with our tool, we additionally implemented a new input format based
on a simple procedural language with exceptions and Boolean variables, which is
automatically translated into OPA. Moreover, we are currently working on the
implementation of the model checking for ω-words, described in Section 4.1.

As a future research step, we plan to develop user-friendly domain-specific
languages for specification too, to prove that OP languages and logics are suitable
in practice to program verification.

Acknowledgments

We are thankful to Davide Bergamaschi for developing an early prototype of
POMC, and to Francesco Pontiggia for implementing several performance opti-
mizations.

References

1. Abrahams, D.: Exception-Safety in Generic Components. In: Generic Program-
ming. pp. 69–79. Springer (2000). https://doi.org/10.1007/3-540-39953-4 6

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin,
L.: First-order and temporal logics for nested words. LMCS 4(4) (2008).
https://doi.org/10.2168/LMCS-4(4:11)2008

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005). https://doi.org/10.1145/1075382.1075387

4. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural pro-
grams. In: Handbook of Model Checking, pp. 541–572. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8 17

5. Alur, R., Chaudhuri, S., Madhusudan, P.: Software model checking using lan-
guages of nested trees. ACM Trans. Program. Lang. Syst. 33(5), 15:1–15:45 (2011).
https://doi.org/10.1145/2039346.2039347

6. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested
calls and returns. In: TACAS 2004. pp. 467–481. Springer (2004).
https://doi.org/10.1007/978-3-540-24730-2 35

7. Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: ACM STOC (2004)
8. Alur, R., Madhusudan, P.: Adding nesting structure to words. JACM 56(3) (2009).

https://doi.org/10.1145/1516512.1516518
9. Alur, R., Chaudhuri, S., Etessami, K., Madhusudan, P.: On-the-fly reachability and

cycle detection for recursive state machines. In: TACAS 2005. LNCS, vol. 3440,
pp. 61–76. Springer (2005). https://doi.org/10.1007/978-3-540-31980-1 5

10. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: SPIN Model Checking and Software Verification. pp. 113–130. Springer (2000).
https://doi.org/10.1007/10722468 7

https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1145/2039346.2039347
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1007/10722468_7

22 M. Chiari, D. Mandrioli, M. Pradella

11. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., Pradella, M.:
Parallel parsing made practical. Sci. Comput. Program. 112, 195–226 (2015).
https://doi.org/10.1016/j.scico.2015.09.002

12. Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of non-
regular properties for nonregular processes. In: LICS 95. pp. 123–133 (1995).
https://doi.org/10.1109/LICS.1995.523250

13. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: CONCUR ’97. pp. 135–150. Springer (1997).
https://doi.org/10.1007/3-540-63141-0 10

14. Bouajjani, A., Habermehl, P.: Constrained properties, semilinear systems, and
petri nets. In: CONCUR ’96. LNCS, vol. 1119, pp. 481–497. Springer (1996).
https://doi.org/10.1007/3-540-61604-7 71

15. Bozzelli, L., Murano, A., Peron, A.: Timed context-free temporal logics. In: Gan-
dALF 2018. EPTCS, vol. 277, pp. 235–249. Open Publishing Association (2018).
https://doi.org/10.4204/EPTCS.277.17

16. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: Automated Reasoning.
pp. 418–433. Springer (2014). https://doi.org/10.1007/978-3-319-08587-6 33

17. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for in-
finite sequential processes. Theor. Comput. Sci. 221(1-2), 251–270 (1999).
https://doi.org/10.1016/S0304-3975(99)00034-1

18. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.:
Stack size analysis for interrupt-driven programs. Inf. Comput. 194(2), 144–174
(2004). https://doi.org/10.1016/j.ic.2004.06.001

19. Chaudhuri, S., Alur, R.: Instrumenting C programs with nested word
monitors. In: SPIN ’07. LNCS, vol. 4595, pp. 279–283. Springer (2007).
https://doi.org/10.1007/978-3-540-73370-6 20

20. Chen, F., Rosu, G.: Java-MOP: A monitoring oriented programming environ-
ment for Java. In: TACAS 2005. LNCS, vol. 3440, pp. 546–550. Springer (2005).
https://doi.org/10.1007/978-3-540-31980-1 36

21. Chiari, M., Mandrioli, D., Pradella, M.: POTL: A first-order complete temporal
logic for operator precedence languages. CoRR abs/1910.09327 (2019), http:
//arxiv.org/abs/1910.09327

22. Chiari, M., Mandrioli, D., Pradella, M.: Operator precedence tempo-
ral logic and model checking. Theor. Comput. Sci. 848, 47–81 (2020).
https://doi.org/10.1016/j.tcs.2020.08.034

23. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

24. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and
the Visibly Pushdown Property. JCSS 78(6), 1837–1867 (2012).
https://doi.org/10.1016/j.jcss.2011.12.006

25. D’Antoni, L.: A symbolic automata library, https://github.com/lorisdanto/
symbolicautomata

26. Driscoll, E., Thakur, A.V., Reps, T.W.: OpenNWA: A Nested-Word Automa-
ton Library. In: CAV 2012. LNCS, vol. 7358, pp. 665–671. Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7 47

27. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer
(2000)

28. Esparza, J., Kučera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Information and Computation 186(2), 355–376 (2003).
https://doi.org/10.1016/S0890-5401(03)00139-1

https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1109/LICS.1995.523250
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-61604-7_71
https://doi.org/10.4204/EPTCS.277.17
https://doi.org/10.1007/978-3-319-08587-6_33
https://doi.org/10.1016/S0304-3975(99)00034-1
https://doi.org/10.1016/j.ic.2004.06.001
https://doi.org/10.1007/978-3-540-73370-6_20
https://doi.org/10.1007/978-3-540-31980-1_36
http://arxiv.org/abs/1910.09327
http://arxiv.org/abs/1910.09327
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/j.jcss.2011.12.006
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://doi.org/10.1007/978-3-642-31424-7_47
https://doi.org/10.1016/S0890-5401(03)00139-1

Model-Checking Structured Context-Free Languages 23

29. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. In: Infinity 1997. ENTCS, vol. 9, pp. 27–37. Elsevier (1997).
https://doi.org/10.1016/S1571-0661(05)80426-8

30. Floyd, R.W.: Syntactic Analysis and Operator Precedence. JACM 10(3), 316–333
(1963). https://doi.org/10.1145/321172.321179

31. Godefroid, P., Yannakakis, M.: Analysis of boolean programs. In: TACAS 2013.
pp. 214–229. Springer (2013). https://doi.org/10.1007/978-3-642-36742-7 16

32. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York
(2008). https://doi.org/10.1007/978-0-387-68954-8

33. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic, pp. 99–217. Springer (2002).
https://doi.org/10.1007/978-94-017-0456-4 2

34. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
35. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification

with BLAST. In: SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer (2003).
https://doi.org/10.1007/3-540-44829-2 17

36. Jensen, T., Le Metayer, D., Thorn, T.: Verification of control flow based security
properties. In: Proc. ’99 IEEE Symp. on Security and Privacy. pp. 89–103 (1999).
https://doi.org/10.1109/SECPRI.1999.766902

37. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447–491. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8 15

38. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, University of
California, Los Angeles (1968)

39. Kupferman, O., Piterman, N., Vardi, M.Y.: Model Checking Linear Properties
of Prefix-Recognizable Systems. In: CAV 2002. LNCS, vol. 2404, pp. 371–385.
Springer (2002). https://doi.org/10.1007/3-540-45657-0 31

40. Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown Specifications. In: LPAR
2002. LNCS, vol. 2514, pp. 262–277. Springer (2002). https://doi.org/10.1007/3-
540-36078-6 18

41. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: Their automata-theoretic and logic characterization. SIAM J. Comput.
44(4), 1026–1088 (2015). https://doi.org/10.1137/140978818

42. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: Theoret-
ical and practical benefits. Computer Science Review 27, 61–87 (2018).
https://doi.org/10.1016/j.cosrev.2017.12.001

43. Mandrioli, D., Pradella, M., Crespi Reghizzi, S.: Star-freeness, first-order definabil-
ity and aperiodicity of structured context-free languages. In: ICTAC 2020. LNCS,
vol. 12545, pp. 161–180. Springer (2020). https://doi.org/10.1007/978-3-030-64276-
1 9

44. Marlow, S.: Haskell 2010 language report. https://www.haskell.org/onlinereport/
haskell2010/ (2010)

45. McNaughton, R.: Parenthesis Grammars. JACM 14(3), 490–500 (1967).
https://doi.org/10.1145/321406.321411

46. Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition.
In: ICALP ’80. LNCS, vol. 85, pp. 422–435 (1980)

47. Nguyen, H.: Visibly pushdown automata library (2006), https://web.
imt-atlantique.fr/x-info/hnguyen/vpa

48. Nguyen, H., Touili, T.: CARET model checking for malware detection. In: SPIN
2017. pp. 152–161. ACM (2017). https://doi.org/10.1145/3092282.3092301

49. Nguyen, H., Touili, T.: CARET model checking for pushdown systems. In: SAC
2017. pp. 1393–1400. ACM (2017). https://doi.org/10.1145/3019612.3019829

https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1145/321172.321179
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1109/SECPRI.1999.766902
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/3-540-45657-0_31
https://doi.org/10.1007/3-540-36078-6_18
https://doi.org/10.1007/3-540-36078-6_18
https://doi.org/10.1137/140978818
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1007/978-3-030-64276-1_9
https://doi.org/10.1007/978-3-030-64276-1_9
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/321406.321411
https://web.imt-atlantique.fr/x-info/hnguyen/vpa
https://web.imt-atlantique.fr/x-info/hnguyen/vpa
https://doi.org/10.1145/3092282.3092301
https://doi.org/10.1145/3019612.3019829

24 M. Chiari, D. Mandrioli, M. Pradella

50. Piterman, N., Vardi, M.Y.: Global model-checking of infinite-state sys-
tems. In: CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer (2004).
https://doi.org/10.1007/978-3-540-27813-9 30

51. Rosu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: This time
with calls and returns. In: RV 2008. LNCS, vol. 5289, pp. 51–68. Springer (2008).
https://doi.org/10.1007/978-3-540-89247-2 4

52. Sutter, H.: Exception-safe generic containers. C++ Report (1997), https:
//ptgmedia.pearsoncmg.com/imprint downloads/informit/aw/meyerscddemo/
DEMO/MAGAZINE/SU FRAME.HTM

53. Tang, N.V., Ohsaki, H.: Checking on-the-fly universality and inclusion problems of
visibly pushdown automata. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 94-A(12), 2794–2801 (2011). https://doi.org/10.1587/transfun.E94.A.2794

54. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and
Computation 164(2), 234–263 (2001). https://doi.org/10.1006/inco.2000.2894

https://doi.org/10.1007/978-3-540-27813-9_30
https://doi.org/10.1007/978-3-540-89247-2_4
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://doi.org/10.1587/transfun.E94.A.2794
https://doi.org/10.1006/inco.2000.2894

	Model-Checking Structured Context-Free Languages
	Introduction
	Operator Precedence Languages
	Operator Precedence Omega-Languages
	Modeling programs with OPA

	POTL: Syntax and Semantics
	Expressiveness of POTL

	Model Checking
	Model Checking for Omega-Words
	Complexity

	Experimental Evaluation
	Conclusions

